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ABSTRACT 

To continue scientific research on the moon, largely abandoned since the Apollo 

era, humanity must establish a permanent outpost. This research has narrowed the lunar 

base sites to the polar regions as these sites offer the highest scientific value. The 

overarching problem is how to supply continuous power to lunar bases located at the 

poles. This study focuses on the feasibility and architectural analysis of wireless power 

transfer to lunar polar outposts. Two wireless power transfer methods, microwave and 

laser, were integrated into satellite constellations and the overall system architecture. The 

two architectures were modeled, analyzed, and evaluated to determine which method is 

more feasible. The results showed that while both the use of microwave and laser 

transmission were feasible, the microwave approach produced large transmitter and 

receiver antenna sizes driving unreasonable cost. The laser transmission approach 

showed less end-to-end efficiency and therefore higher per satellite cost but resulted in a 

lower total system cost and was the more feasible architecture. 
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EXECUTIVE SUMMARY 

In order for people to more fully explore the Moon, a continuous supply of 

electrical power would be required. The primary research was to determine if it is 

feasible to provide power to a lunar polar outpost using a satellite constellation in lunar 

orbit. To answer this question, it was necessary to conduct a literature review on several 

aspects of the problem including the location of a lunar outpost, the types of lunar orbits, 

the history and state of the technology for microwave and laser wireless power 

transmission, and the history and development of solar power satellite concepts. The 

location of the outpost was derived from the work done by NASA on the Scientific 

Context for Lunar Exploration and a landing site survey (Kring 2012). The two options 

for the outpost location with the highest scientific value were at the South Pole and the 

South Pole-Aitken Basin. The lunar orbit type applicable to solar power satellites 

included frozen elliptical orbits. The frozen elliptical orbit is a class of stable, highly 

inclined elliptical orbits for polar regions with a ten-year duration that require little 

station-keeping, first examined by Todd A. Ely (Ely 2005). Ely’s research into these 

orbits produced a three-satellite constellation that provided continuous coverage of the 

lunar South Pole (Ely 2006).  

Microwave wireless power transmission is the current default choice for wireless 

power transfer and a significant amount of scientific research, development, and testing 

has been conducted to advance the use of this frequency range. In the 1970s, NASA in 

conjunction with the Department of Energy conducted tests using the extremely high 

frequency (EHF) portion of the electromagnetic spectrum for wireless power transfer 

which would become the standard approach for microwave wireless power transfer 

(Brown 1984). The standard approach included the use of a parabolic transmitter pointed 

at a receiving array. Laser wireless power transmission enjoys a long history of both 

theoretical and material origin, as Max Plank formulated the underlying idea that light 

was just another form of electromagnetic radiation and received the Nobel Prize for it 

1918 (Hecht 1992). Building on the theoretical work done by several scientists, including 

Albert Einstein, Theodore Maiman, in May of 1960 created the first operating laser at 
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Hughes Research Laboratory in California (Maiman 1960). The physics of laser wireless 

power transmission provided the calculations, and since the laser will propagate through 

a vacuum it can be treated as a Gaussian beam. A Gaussian beam is used in optics when a 

beam of electromagnetic radiation has an electric field and intensity profiles in the 

transverse plane that can be approximated by Gaussian functions (Svelto 1976). 

The first person to develop the idea of using satellites for power generation was 

Dr. Peter Glaser, in 1968, with his concept of a Solar Power Satellite (SPS). His concept 

was for a large platform placed in geosynchronous orbit, which collected the continuous 

solar energy of the Sun and utilized wireless power transmission to beam solar energy via 

microwaves to Earth’s receiving stations (Glaser 1968). Further research identified five 

solar power satellite concepts including the 1979 Reference Design, the SunTower, the 

Integrated Symmetrical Concentrator, the First International Assessment of Space Solar 

Power, and the SPS-ALPHA concepts. These concepts provided useful figures of merit 

and analysis methodology used in this thesis. 

The results of these previous efforts were then used to select an appropriate lunar 

outpost location and develop and analyze lunar orbits using the Systems Tool Kit (STK) 

software suite. After identifying the lunar outpost site, power requirement, and 

constellation parameters, a system cost, mass, and power thread calculation was 

conducted on two wireless power transmissions options using microwave or laser power 

beaming. Finally, a sensitivity analysis was conducted on key figures of merit in the 

architecture to highlight areas that need further technological development to increase 

end-to-end efficiency and/or decrease potential system cost. The end goal of this thesis 

was to set up a cost comparison to determine which wireless power transmission option 

was more feasible.  

The lunar outpost location was the first parameter selected. The location of the 

outpost was derived from the work done by NASA on the Scientific Context for Lunar 

Exploration and a landing site survey. The two options for the outpost location were at 

the South Pole and the South Pole-Aitken Basin. From the landing site survey the SPA 

Basin offered the higher scientific value and was chosen as the outpost location. The next 

parameter selected was the type of lunar orbit that provided coverage to these outpost 
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locations. The choice of orbit types were Halo orbits at the L1 or L2 libration point, low 

lunar orbits, and frozen elliptical orbits. The frozen elliptical orbit was selected for 

analysis as it offered the best coverage for the SPA Basin and can be seen in Figure 1. 

The resulting satellite constellation had a 20˚ minimum elevation angle constraint to the 

lunar outpost, with four total satellites with two-satellites in two-planes each. The planes 

were outset by 180˚ with a worst case distance from satellite to lunar outpost of 9881 

kilometers.  

 
Figure 1. Ground Track for 4 Satellite Constellation for SPA Coverage  

The lunar power requirement was derived from the International Space Station. 

The ISS solar wing arrays produce between 84–120 kilowatts (kW) with a standard crew 

size of three and maximum long-duration crew size of six. A 100-kilowatt power 

requirement was used for analysis of the SPS concepts.  

With the outpost location, orbit type, and constellation parameters identified, a 

modified version of the First International Assessment of Space Solar Power was used. 

This methodology required the development of a functional architecture and identifying 

the interrelationship of element in the functional architecture. The key to this type of 

methodology is finding relevant figures of merit for architecture elements. The literature 

review on wireless power transfer and other solar power satellites concepts provided 

these figures of merit. The functional architecture and interrelationships can be seen in 

Figure 2 and Figure 3.    
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Figure 2. SPS Functional Architecture 

 

Figure 3. Relationship of Functional Elements 

From the functional architecture and understanding the relationship between the 

elements a mass, cost, and power thread calculation was done for microwave and laser 

wireless power transmission using the SPA Basin outpost location, frozen elliptical orbit, 

and lunar outpost power requirement parameters. The results of these calculations are 

shown in Table 1. The result of these calculations using total system cost as the 
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determining criteria was a microwave SPS total system cost of $3,425 million and a laser 

SPS total system cost of $3,078 million. While both the microwave and laser SPS 

concepts were feasible, the laser SPS concept achieved a lower cost and is the more 

feasible system.  

Table 1. Microwave and Laser SPS Comparison 

  MICROWAVE LASER UNITS 

FREQUENCY  94 GHz 

WAVELENGTH  805 Nanometers (nm)

LUNAR OUTPOST POWER REQUIREMENT 100 100 kW 

SATELLITE RANGE  9881 9881 km 

END‐TO‐END EFFICIENCY  11 % 8.3 % % 

SATELLITE POWER REQUIREMENT  912 1208 kW 

SATELLITE POWER PER UNIT MASS  0.2 0.2 kW/kg 

SATELLITE MASS  4.6 6.0 Metric Tons (mT)

SATELLITE COST PER UNIT MASS  100,000 100,000 $/kg 

SATELLITE COST  456 604 $M 

TRANSMITTER DIAMETER  277 5.45 Meters 

RECEIVER DIAMETER  278 21 Meters 

RECEIVER COST  970 30 $M 

RECEIVER LUNAR COST PER UNIT MASS 100,000 100,000 $/kg 

TOTAL LAUNCH VEHICLE COST  632 632 $M 

LAUNCH VEHICLE MASS TO TLI  13.2 13.2 Metric Tons (mT)

CONSTELLATION SIZE  4 4 Satellites 

TOTAL SYSTEM COST  3,425 3,078 $M 

 

After completing the mass, cost, and power thread calculations a sensitivity 

analysis was conducted to understand how varying parameters affected the total system 

cost of the microwave and laser SPS concepts. Since the microwave lunar receiver was 

the driving cost factor over the laser system the cost to land mass on the Moon was 

allowed to vary from $100,000 per kilogram to $50,000 per kilogram. The results of this 

sensitivity analysis showed that the per-kilogram cost to land on the Moon needed to be 

below $62,500 to be more economically feasible with the laser SPS concept. The final 

conclusion after the sensitivity analysis was that the Laser SPS concept was the more 

feasible solution and could provide continuous power to a lunar outpost.  
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I. INTRODUCTION 

A. CONTEXT 

Eugene Cernan was the last man to step foot on the Moon in completion of the 

Apollo mission in December 1972 (Cernan 1999). Since that time, no other human has 

made contact with the Moon’s surface. However, this status quo is about to change, given 

the recent re-invigoration of National Aeronautics and Space Administration (NASA) as 

an exploration agency, and advances in commercial launch vehicles. While many in the 

space exploration business wish to go beyond the Moon, to Mars and to the asteroids, the 

technology for these ventures is not yet adequate for the task. Given this restriction, this 

thesis assumes the next space exploration mission will be to establish a permanent lunar 

outpost in the polar regions of the Moon which has the potential to be accomplished.  

1. Lunar Exploration 

In September 1962, President Kennedy posed the question, “But why, some say, 

the Moon? Why choose this as our goal? We choose to go to the Moon … not because [it 

is] easy, but because [it is] hard; because that goal will serve to organize and measure the 

best of our energies and skills, because that challenge is one that we are willing to accept, 

one we are unwilling to postpone, and one which we intend to win” (Kennedy 1962). 

This answer is still as satisfying 53 years later as it was in 1962; however, while the 

Apollo mission saw success, it never lived up to the overarching dream it had inspired. 

That dream was to see mankind fully explore and establish a continuous presence on the 

Moon in perpetuity as an example of mankind’s inexorable charge into space. The Moon, 

given its accessibility, is a natural next step for human settlement on mankind’s journey 

toward Mars, and as a testbed for the technologies and concepts that will be needed for 

long-term human survival in space. The lunar environment offers several exceptional 

prospects for continued research of the Earth and of the greater universe. Lunar research 

opportunities include the study of space weather, Earth’s albedo or, given the shielding 

influence of the Moon, radio astronomy mapping of the universe on the far side. 

Additional lunar research is the study of the Moon itself, including the origin of Earth’s 
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only satellite, its evolution, composition, and internal structure. In both NASA’s Vision 

of Space Exploration (Newman 2005) and the European Space Agency’s (ESA) 

MoonNEXT mission, the objective was the scientific exploration of the permanently 

shadowed areas around the lunar poles (Carpenter 2008). These craters offer the best 

possible conditions for infrared observations due to their continuous darkness and low 

temperatures. Also, the lunar poles offer new locations for in situ crust and mantle 

research not conducted during the Apollo missions and has the greatest probability of 

researchers finding ice on the Moon. 

One of the many challenges to establishing a permanent lunar outpost is the need 

to provide continuous sustainable power. A useful reference point to establish the amount 

of power needed to maintain a lunar outpost can be derived from the space community’s 

experience with the International Space Station (ISS). The ISS solar wing arrays produce 

between 84–120 kilowatts (kW) with a standard crew size of three and maximum long 

duration crew size of six (Wells 2009). One method of providing the power needed for a 

lunar polar outpost is the use of a solar power satellite.   

2. Solar Power Satellite 

The first person to develop the idea of using satellites for power generation was 

Dr. Peter Glaser in 1968 with his concept of a Solar Power Satellite (SPS). His concept 

was for a large platform placed in geosynchronous orbit, which collected the continuous 

solar energy of the Sun and utilized wireless power transmission to beam solar energy via 

microwaves to Earth’s receiving stations (Glaser 1968). This design has several 

advantages to terrestrial-based solar power generation methods, as this design avoids the 

impediments of inclement weather and night time outages during periods when no solar 

energy can be collected. This design would produce a steady supply of continuous 

energy, except during small periods when the SPS was in eclipse, and would achieve a 

higher energy efficiency than solar power systems based on the ground. The fundamental 

goal of Glaser’s design was to provide a supply of clean, renewable, and affordable 

power in the face of ever increasing demand for energy and the subsequent 

environmental costs from current fossil fuel power generation (1968). 



 3

3. Power Generation for Lunar Exploration 

There are several options for generating power for a lunar outpost and lunar 

exploration. These options include the use of photovoltaics directly on the Moon, the use 

of nuclear power, and the use of a solar power satellite. This thesis will provide a review 

of each option and discuss the issues concerning the use of photovoltaics and nuclear. 

The use of photovoltaics directly on the Moon has two potential issues. The first issue is 

the available sunlight for a given lunar outpost location, where some locations receive 

light less than half of the time, and therefore would require large storage batteries 

(Brinker 1988). The first issue with photovoltaics and large storage batteries can be dealt 

with using peaks of eternal light, which are mountains that receive continuous light given 

the slight tilt in the Moon’s orbit (Kruijj 2000). The use of peaks of eternal light reduces 

the energy storage system mass required for surface photovoltaic systems that experience 

less available sunlight. However, this leads to a second issue: photovoltaics, positioned 

on peaks of eternal light, would require the use of power cables to transport energy to 

lunar outposts (Popovic 2008). The other option for generating power requires the use of 

nuclear fission. This option has two issues concerning safety and mass. While nuclear 

type payloads have been launched in the past, a nuclear reactor large enough to power a 

lunar outpost in the hundreds of kilowatts would pose a significant launch risk and 

exposure of the environment to nuclear contamination from a failed launch or lunar 

landing (Achenbach 2015). In addition, a nuclear power generating plant for a lunar 

outpost would create a safety issue for landing on the Moon and to any lunar astronauts 

who would have to maintain this equipment. These concerns lead to the final option, 

which is the use of a solar power satellite wirelessly beaming power to a lunar outpost.  

B. PURPOSE AND RESEARCH QUESTION 

This research will propose, analyze, and compare two different electromagnetic 

architectures for powering lunar polar outposts using solar power satellites. Based on this 

research, lunar outposts could exist in the polar regions of the moon allowing a 

continuous human presence on the moon for scientific research of the Earth, Moon, and 
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the entire universe. The question this research will attempt to answer: Is it feasible to 

provide power to a lunar polar outpost using a satellite constellation in lunar orbit? 

C. SCOPE, LIMITATIONS, AND METHODOLOGIES 

There are two parts to the scope of this research. First, this thesis surveys and 

provides a summary of the literature for the most current technologies for wireless power 

transfer. Second, given these technologies, satellite architectures are developed using two 

electromagnetic options. These two wireless power and satellite architectures are then 

analyzed for end-to-end performance for providing power to lunar polar outposts. The 

methodology of this research includes a literature review of wireless power transfer, 

available lunar orbits, as well as the scientific context for the location of the lunar 

outpost. The knowledge gained from the literary review is then used to select an 

appropriate lunar outpost location, develop and analyze lunar orbits using the Systems 

Tool Kit (STK) software suite, and run a mass, cost, and end-to-end performance analysis 

using the outpost location and selected orbit. Finally, a sensitivity analysis is conducted 

on key figures of merit in the architecture to highlight areas that need further 

technological development to increase end-to-end efficiency and/or decrease potential 

system cost. 

D. CHAPTER SUMMARY 

Chapter I serves as an introduction to the thesis. Background information is 

included in Chapter II to familiarize the reader with the numerous concepts that will be 

used in the following chapters for analysis. The background information includes the 

scientific context for the exploration of the Moon, an overview of orbital motion and its 

lunar application, wireless power beaming technologies and options, information on the 

history and development of space based solar power, and non-satellite options for lunar 

power generation. This background information provides the reader the boundaries and 

theoretical details in which to determine the feasibility of a solar power satellite powering 

a lunar polar outpost.  

Chapter III identifies a theoretical model to conduct the analysis and to determine 

the feasibility of the system. Using the architectures defined in Chapter III, Chapter IV 
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explains the location of the lunar outpost and shows coverage to applicable lunar orbits 

modeled in STK. The STK results and the methodology used to develop these orbits is 

presented followed by graphical outputs from STK. Lastly, with the lunar outpost 

location and satellite constellation selected, an analysis of the mass, cost, and power 

thread using key figures of merit for solar power satellites for each model is presented. In 

addition to the model for each solar power satellite, sensitivity analysis is conducted to 

show the boundaries for key figures of merit to produce a feasible system solution.  

A general summary of the background information and analysis conducted is 

provided in the final chapter. The thesis question is addressed and conclusions about the 

feasibility of the proposed system solutions are drawn using the findings from Chapter 

IV. Chapter V concludes with suggested areas of future work that could improve the 

feasibility and/or analysis fidelity of proposed systems. 
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II. BACKGROUND 

The application of a space-based solar power system to generate and transmit 

power to a lunar outpost located in its polar regions requires a thorough explanation of 

the physical parameters and limitations of the technologies that influence the system 

architecture and therefore system feasibility. The location of the outpost site and the 

relative satellite motion of stable lunar orbits are critical system architecture factors. In 

addition, the amount of power required by the lunar outpost influences the spacecraft 

mass and how the satellite generates and transmits energy are all vital discussion points. 

Finally, with the identification of the lunar outpost site, outpost power requirement, stable 

lunar orbit, and solar power satellite design completed, this section will review the 

technology for the lunar outpost receiver. This chapter will identify the key parameters of 

the system architecture that will provide context for a solution presented in later chapters 

of this research paper. 

A. LUNAR ORBITAL MOTION 

Modern astronomy has a long history of development starting with a change in 

paradigm from the Greek Earth-centered universe to the Sun-centered solar system 

developed by Copernicus and improved by Johannes Kepler in the early 1600s. Kepler, 

using the calculations of Nicolaus Copernicus and the observations of Tycho Blahe, 

explained the elliptical motion of the planets and therefore other bodies in orbit and 

recorded this updated paradigm in his laws of planetary motion (Sellers 2000). The first 

law changed the orbit of each planet to an ellipse and moved the Sun to one of the focal 

points. The second law created an imaginary line connecting a planet to the Sun that 

sweeps out equal areas in equal times. The third law stated that the period of the planet 

squared is proportional to the mean distance from the Sun cubed (Sellers 2000).  

Kepler’s paradigm was very successful in describing the celestial mechanics of 

the planets, but it provided no explanation for “why” the planets moved in this manner 

(Sellers 2000). It was Isaac Newton who incorporated the work of Galileo Galilei and his 

study of terrestrial dynamics and Kepler’s insight to form the laws of motion (Sellers 
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2000). Newton’s three Laws of Motion and his Universal Law of Gravitation provided 

both a description and a mathematical explanation for the motion of the planets and 

therefore the movement of objects in the solar system. Newton’s first law of motion is the 

law of inertia, which states that a body remains at rest or moves in a straight line unless 

acted upon by an outside force. The second and third law of motion, is the law of action 

and reaction. The second law of motion was Newton’s true insight which describes how a 

force is equal to the product of a body’s mass times its acceleration (Capderou 2006). 

Newton’s laws provided the underlying knowledge for the study of the motion of 

celestial objects which became known as astrodynamics. Astrodynamics allows the 

accurate portrayal of orbiting bodies. Those orbits can be described as elliptical 

trajectories that are periodic in nature with a central planetary object as the reference 

frame (Montenbruck 2012).  

Lunar orbits, called selenocentric orbits, refer to the orbit of a body around the 

Moon with respect to its center. There are two types of selenocentric orbits called low 

lunar orbit and frozen orbit. Low lunar orbits are defined as orbits below 100 kilometers 

in altitude. The application of this orbit is particularly valuable in the exploration of the 

Moon; however, uneven gravitational perturbations caused by the Moon make many 

unstable (Meyer 1994). These gravitational perturbations are caused by the mass 

concentrations, called mascons, below the lunar surface and result in changes to 

selenocentric orbits within several days (Meyer 1994).  

In 2001, it was discovered that the effect of these mascons on lunar satellites 

could be used to create frozen orbits (Bell 2006). Frozen orbits are defined as a type of 

orbit where due to the shape of the central body and wisely selecting the initial orbital 

parameters, the satellite’s altitude is always at the same point in each orbit (Bell 2006). 

The gravitational perturbations cancel out the changes to the satellite’s inclination, 

apogee, and eccentricity. The results are an orbital type that is stable over the long term 

with minimal station-keeping maneuvers (Folta 2006). Frozen orbits can be used for low 

lunar orbits and have also been modeled at higher altitudes against real operational data. 

An example of this comparison against real operational data was the Clementine 

spacecraft launched in 1994, the modeling results matched the operational data in the 
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predicted pattern (Folta 2006). The Clementine spacecraft had an apoapsis of 3000 

kilometers and a periapsis of 400 kilometers. Low lunar frozen orbits have been found at 

several orbital inclinations to include 27˚, 50˚, 76˚, and 86˚ degrees (Bell 2006). Higher 

frozen orbits have been found at orbital inclinations of 40˚, 45˚, and 56˚ degrees with a 

minimal altitude of 225 kilometers (Ely 2005). Frozen orbits unique characteristics allow 

a greater utility than low lunar orbits and are useful for science, communication, and 

navigation missions. 

Of particular interest to this thesis topic is a class of stable, highly inclined 

elliptical orbits for polar regions with a ten-year duration that require little station-

keeping, first explored by Todd A. Ely (2005). This orbit type is a complex three-body 

dynamic problem in which satellites in orbit experience significant perturbations when at 

altitudes greater than 500 km to 20,000 km from the Earth’s gravitation with secondary 

perturbations from the Sun, the non-spherical gravity field of the Moon, and solar 

radiation pressure (Ely 2005). After modeling and solving for the effects of these 

perturbations, a unique orbit was found for the elliptical inclined orbit where the 

perturbations created a bounded quasi-periodic behavior without transferring the satellites 

in these orbits onto hyperbolic or chaotic trajectories (Ely 2006). Figure 1 illustrates a 

five-year propagation with elliptical inclined orbits in red, circular inclined orbits in blue, 

and circular polar orbits in green. As seen in Figure 1, the elliptical inclined orbit in red, 

the propagation of the satellite in this orbit is almost periodic while remaining stable.  
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Figure 1. Five-Year Propagations of Elliptical Inclined Orbit, a Circular 
Inclined Orbit, and a Circular Polar Orbit (from Ely 2006) 

From the elliptical inclined orbit, the following orbital elements and coverage 

were found with a semi-major axis of 6541.4 kilometers (km), an eccentricity of 0.6, an 

inclination of 56.2˚, ascending node of 0˚, an argument of periapsis of 90˚, and a mean 

anomaly spacing of 120˚ (Ely 2006). 
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  (1) 

The coverage statistics for this constellation are shown in Table 1 and when using 

a three-satellite constellation for lunar South Pole coverage results in continuous 

coverage often with two-fold coverage of the South Pole. 
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Table 1. Coverage Statistics of a South Polar Station by each Spacecraft and 
Constellations (from Ely 2005) 

 

A type of orbit that is not selenocentric but has been used in space solar-power 

architectures is the halo orbit. Halo orbits utilize Lagrange points, which were discovered 

in 1772 by Joseph-Louis Lagrange and published in his report, “Essay on the Three-Body 

Problem.” Lagrange points exist in any three-body dynamic system where a relatively 

small object is stable between two large masses. The two large masses create zones of 

equal gravitational potential energy where small objects can “park”; essentially, the 

gravitational pull of two large masses cancels out.   

Figure 2 shows the Lagrange points for the Earth-Moon system where the L1 and 

L2 are on the near-side and far-side of the Moon at a distance of approximately 57,000 

kilometers (Kare 2004).  

  

Figure 2. Lagrange Points in the Earth-Moon System (from Kring 2012) 

Satellite 1 Satellite 2 Satellite 3 Constellation Constellation
1-Fold Coverage 2-Fold Coverage

Mean Pass (hrs) 10.572 10.582 10.579 Total Span Total Span
Mean Gap (hrs) 3.513 3.507 3.509 0 0

% Coverage 73.35 73.399 73.375 100 100

Coverage Statistics of a South Polar Station by each Spacecraft and Constellation



 12

The zone of stable equilibrium at the L1, L2, and L3 Lagrange points is very 

small and has been described as balancing a pencil on its tip where any perturbation will 

make it unstable. Therefore, spacecraft exploiting these points utilize a trajectory called 

halo orbits where the spacecraft orbit around the Lagrange gravitational equilibrium point 

in a circular path (Farquhar 1970). The L4 and L5 Lagrange points are very stable and 

can be visualized as an object at the bottom of a valley where any perturbation 

experienced results in the object moving back to the bottom of the valley. However, the 

L4 and L5 Lagrange points’ distance to the Moon is too significant to be considered for 

lunar space power beaming applications. Research conducted on the use of L1 and L2 

Lagrange points for the lunar South Pole coverage concluded that the use of two satellites 

in a single phased vertical butterfly orbit around the L1 libration point, as seen in Figure 

3, provided continuous coverage of the lunar South Pole (Grebow 2008).  

 

Figure 3. L1 Vertical Orbit with Intersecting Unstable (Red) and Stable (Blue) 
Manifolds from/to Earth and Moon Vicinities (from Grebow 2008) 

B. LUNAR POWER GENERATION METHODS 

The key question to answer on the feasibility of the lunar outpost is how to 

provide enough power at low mass and therefore low cost. Options include the use of 

surface photovoltaics with a complementary energy storage system, surface photovoltaics 
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at peaks of eternal light using cable transmission, or the use of nuclear power generation 

systems. The option of solar power satellites, which is the focus of this thesis, will be 

discussed in other sections. While each option is theoretically feasible, there are pros and 

cons with respect to cost/mass and/or safety.  

The use of photovoltaic power generation systems directly on the Moon for polar 

regions has two important problems, which are the amount of available sunlight and the 

mass of the batteries. The amount of available sunlight at the Moon is determined by its 

orbit, with parts of the Moon receiving sunlight for approximately 14 terrestrial days (336 

hours) followed by 14 terrestrial days of night. To overcome the problems of night time 

at a lunar base would require the use of batteries to act as an energy storage system. In 

the late 1980s, NASA conducted a study on the advanced photovoltaic power systems 

complemented by a storage system for lunar bases (Brinker 1988). NASA calculated the 

mass for both the photovoltaic and energy storage systems using a 100-kilowatt lunar 

base power  requirement using figures of merit of power per unit mass (watts per kg, or 

W/kg) and available energy per unit mass (watt-hour per kilogram, or W-hr/kg). While 

the mass of the photovoltaic systems using a 300 W/kg figure of merit produced an 

exceptional total photovoltaic mass of 333 kg, the primary mass driver was the energy 

storage system when using an optimistic figure of merit of 1000 W-hr/kg. The final mass 

of the photovoltaic and energy storage system was 34.35 metric tons (mT) (34,350 kg) 

(Brinker 1988). While feasible, this mass would require several dedicated launches plus 

the lunar base still requires satellite coverage for communications and navigation. 

Therefore, this thesis assumes the use of a better architecture would be a combination of 

solar power satellite as the primary satellite payload with a secondary payload for 

communications and navigation. 

The issue of surface photovoltaics that incur the problem of needing large energy 

storage mass can be overcome using peaks of eternal light. Peaks of eternal light are 

points on a body in the solar system that are in continuous sunlight. There are peaks of 

eternal light on the Moon due to the small axial tilt in the lunar orbit (Kruijj 2000). In a 

lunar power transfer feasibility study conducted in 2008, these peaks were assumed to be 

used with power cables as the transmission method (Popovic 2008). The lunar base 



 14

power requirement was 50 kW and the peaks of eternal light were considered within 2 

km of the lunar outpost. A figure of merit for the specific mass per unit distance was 28.3 

kg/1000 ft or 0.093 kg/m. The final results of the feasibility study for the use of peaks of 

eternal light using power cable transmission to lunar outposts was a total cable mass of 

7500 kg (7.5 metric tons). This solution, compared to the surface photovoltaic and energy 

storage system, greatly reduces the amount of mass needed to be place on the Moon. The 

feasibility study identified problems other than the mass incurred when using power 

cables, including temperature sensitivity and solar flare induced transient effects. While 

these additional considerations may increase the mass of the peaks of eternal light 

solution, this option is highly competitive with the Solar Power Satellite system. 

Recognizing the need for low weight power sources for space applications, in the 

1980s, NASA, in conjunction with the Defense Advanced Research Projects Agency 

(DARPA), and the Department of Energy, began a program called the Space Reactor 

Project (SP-100) (Sovie 1987), as shown in Figure 4. 

 

 

Figure 4. The SP-100 Space Nuclear Reactor Design (from Lior 2001) 
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The SP-100 reactor was designed to produce 100 kilowatts and be scalable to 1 

megawatt with an initial total mass of 4600 kg or 4.6 metric tons, have a design life of 10 

years, and provides an impressive figure of merit of system power to mass ratio of 217 

W/kg (Marriott 1994). While the use of nuclear power for a lunar base is feasible, the 

primary issues are both political and safety related. As seen in the recent (2014–2015) 

launch failures of the Orbital Sciences Antares rocket, Russian Soyuz booster, and the 

SpaceX Falcon 9 in support of the International Space Station, there is still a high degree 

of technical risk associated with any launch (Achenbach 2015). The danger in using a 

nuclear reactor for lunar outposts is the risk of fallout from orbital debris should a launch 

failure occur. In addition, the nuclear reactor would have to land on the Moon, and should 

a landing failure occur could spread nuclear debris across a large range of the real estate 

that was intended for study. The use of nuclear reactors to power a lunar outpost, while 

feasible, carries associated political and safety risks too high to be considered given the 

available alternative of a solar power satellite. 

C. WIRELESS POWER TRANSFER 

Heinrich Hertz pioneered the technologies used today to transmit electricity 

though free space based on the fundamental work done by James Maxwell. Hertz 

demonstrated the possibility of wireless power transmission through his work on wireless 

communication using radio wave propagation for both transmitting and receiving high 

frequency electricity using a focusing technique by modification of antenna size and 

curvature. Nikola Tesla used the foundation set by Hertz in 1899 to achieve the first 

wireless power transfer of electricity. Tesla’s efforts were largely unsuccessful even 

though physically possible because he used frequencies in the 150 kiloHertz (kHz) range 

and in excess of 100 million volts. The choice of such a high frequency and associated 

shorter wavelength was necessary to realize equipment of practical size since low 

frequency power transmission requires unreasonably large equipment. His unsuccessful 

attempts at wireless power transfer were due to the lack of technology able to handle the 

short wavelengths. The technology required to handle wireless power transmission of 

short wavelengths, even for small amounts of power, was not available for another 40 

years (Brown 1984). It was with the invention of the magnetron and klystron, both 
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developed during World War II, that the use of microwaves became available for 

effective transmission of energy. However, the application of microwaves for wireless 

power transfer would not be completed until the 1960s, when William Brown used 

microwave transmission to power a tethered helicopter (Brown 1984). Since these early 

efforts by Hertz, Tesla, and Brown, the technology for wireless power transfer, 

specifically the use of microwaves, has advanced significantly. Recently, in March of 

2015, Mitsubishi Heavy Industries with the sponsorship of the Japan Aerospace 

Exploration Agency (JAXA) sent 10 kilowatts of power through the air over 500 meters 

to a receiver with high accuracy (Mitsubishi 2015).  

The idea of using light produced by lasers for wireless power transfer is more 

recent since the theoretical analysis for a laser was completed in the 1950s and a 

functioning laser was presented in the 1960s (Gould 1959). The use of light produced by 

lasers for wireless power transfer consequently requires the use of specialized 

photovoltaic cells to receive and convert the energy. The development and use of 

photovoltaic cells also goes back to 1960s when they were first mounted on spacecraft to 

complement the batteries and extend the spacecraft’s operational life. Research and 

advances are continuing for specialized photovoltaics for laser application (Fast 2011). 

Microwaves are the default choice for wireless power transfer and a significant 

amount of scientific research, development, and testing has been conducted to advance 

the use of this frequency range. Microwaves are defined in a broad sense as the ultra-high 

frequency (UHF) to the extremely high frequency (EHF) part of the electromagnetic 

spectrum with frequencies between 300 MHz and 300 GHz with corresponding 

wavelengths of one meter to one millimeter. In the 1970s, NASA in conjunction with the 

Department of Energy conducted tests using the EHF portion of the electromagnetic 

spectrum for wireless power transfer which would become the standard approach for 

microwave wireless power transfer (Brown 1984). The standard approach included the 

use of a parabolic transmitter pointed at a receiving array. The receiving array used half-

wave dipole antennas, which themselves required extensive development, and became 

known as rectennas (Brown 1984). The fundamental equation used to describe how the 
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selected frequency is proportional to the half-wave dipole size and consequently the size 

of the rectenna is given by:  

 
c

f
    (2) 

where λ is the wavelength, c is the speed of light in a vacuum, and f is the frequency 

(Gordon 1993). The NASA tests used the 2.5 GHz frequency to transmit 30 kW of power 

over 1600 meters using an approximately 27 square meter rectenna with an impressive 

direct current (dc) to dc efficiency of 54% (Brown 1984). One of the many difficulties of 

wireless power transfer using microwave frequencies is the power lost due to atmospheric 

effects. Luckily, for the application of microwave power beaming from a solar power 

satellite to a lunar outpost, there are no atmospheric effects, and this loss does not need to 

be considered.  

Applying the fundamental equation (2) and understanding the proportionality of 

the rectenna size and frequency, the goal of recent research has been to increase the 

frequency and therefore utilize smaller wavelengths to achieve smaller transmitter and 

receiver antenna sizes. If this thesis were purely theoretical, then the best microwave 

frequency to use would be 300 GHz, as this results in the smallest antennas; however, as 

mentioned in the introduction, the goal of this research is to choose relevant and practical 

parameters and there are no antennas that can transmit and receive this frequency. Recent 

research using a two-dimensional slot antenna produced by a well-established 

manufacturing process for silicon chips, called photolithography, has created antennas 

that can receive frequencies between 70 GHz and 150 GHz (Marzwell 2008). While the 

slot antenna can handle frequencies between 70 GHz and 150 GHz, it has been optimized 

for 94 GHz and has a radio frequency (RF) to direct current (dc) conversion efficiency of 

93% and a collection efficiency of 72% with power densities as large as 1 Watt per 

square centimeter (Watt/cm2) (Marzwell 2008). Lacking from this research was an 

important figure of merit needed to understand this technology’s impact on the 

architecture which was the mass per unit area. A substitute mass per unit area of 0.16 

kilograms per meter squared (kg/m2) was used from research on the development of 

rectenna technologies for the 2.45 GHz and 20 GHz frequency (Brown 1987).  
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In addition to technology improvements in microwave receiver technology to 

increase the selected frequency to drive down antenna sizes, research has been conducted 

to increase the size of antennas on orbit. In 2010, Terrestar produced and launched the 

largest commercial antenna on the SkyTerra-1 satellite with a 22-meter antenna reflector 

(Amos 2010). The SkyTerra-1 satellite used large deployable reflectors that were tested 

up to frequency ranges of 15 GHz (Datashvilli 2010). The need for large antenna sizes for 

microwave power beaming is driven by the divergence of the RF beam by diffraction and 

this divergence increases as the distance between the transmitter and receiver increases. 

The equation which describes the divergence of the RF beam is given by:  

 2.44t rD D

x
   (3) 

Equation (3) describes the relationship as a function of the distance between the 

transmitter and receiver, defined as x, the transmitter antenna diameter size Dt, the 

receiver antenna diameter size Dr, and the wavelength λ.  

Independent of the distance between the transmitter and receiver, and the power 

intensity of the beam, the transmitted power in the main lobe of the RF beam will be 

84%. The power intensity of an RF beam and specifically the power in the main lobe at 

the receiver is given by the equation: 
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Equation (4) describes the relationship of the power intensity, I0, within the main lobe of 

the beam at the receiver relative to the amount of transmitted power, Pt, and as a function 

of the distance and wavelength (Potter 2009). Given the concepts above on microwave 

power transmission these parameters can be used to understand their impact on the solar 

power satellite architecture. 

The laser has a long history of both theoretical and material origin, when Max 

Plank formulated the underlying idea that light was just another form of electromagnetic 

radiation and received the Nobel Prize for it 1918 (Hecht 1992). Albert Einstein used 

Max Plank’s law of radiation and firmly established the theoretical fundamentals in his 
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paper called “On the Quantum Theory of Radiation” (Einstein 1917) which outlined how 

the absorption and stimulated emission of electromagnetic radiation could work. Building 

on yet more theoretical work done by several scientists, in May of 1960, Theodore 

Maiman created the first operating laser at Hughes Research Laboratory in California 

(Maiman 1960). At the simplest level, a powered laser acts as a light source in which the 

direction and wavelength of the light can be controlled. At a more complicated level, a 

laser is the result of electrons moving to higher atomic energy levels when given energy 

by light or heat, the resulting higher atomic energy level electron will eventually drop 

back down to a lower energy state and during this transition will release a photon. If the 

electron drop to a lower energy level is random, then the emission of a photon is called 

spontaneous emission. When it is controlled through the use of an external 

electromagnetic field and uses a frequency unique to the specific material to transition 

electrons between two atomic states, it is called stimulation emission. The culmination of 

this theoretical and material research has been a technology whose applications range 

from optical disk drives, fiber optic cables, laser surgery, welding, and the applications 

keep growing (Rose 2010).  

To use a laser in a solar power satellite requires the understanding of three 

parameters. The first parameter is the total amount of power that a laser is required to 

generate for a lunar outpost. The second parameter is the electrical to optical conversion 

efficiency which varies considerably and is contingent upon on the method used to 

generate and control the laser. The third parameter is the power lost to beam spreading 

for a given distance. Since the total amount of power provided by the laser to the lunar 

outpost is determined by the outpost requirements and the electrical-to-optical conversion 

efficiency depends on the type of laser technology used, the primary understanding 

needed for laser power transmission is the power lost due to beam spreading. Luckily for 

the application of a laser solar power satellite powering a lunar outpost, the effect of 

atmospheric transmittance can be ignored since the Moon does not have an atmosphere to 

attenuate the laser.  

Since the laser will propagate through a vacuum, it will be treated as a Gaussian 

beam. A Gaussian beam is used in optics when a beam of electromagnetic radiation has 
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an electric field and intensity profiles in the transverse plane that can be approximated by 

Gaussian functions (Svelto 1976). From the Gaussian functions the beam width or spot 

size can be determined by calculating the beam radius. The beam radius, ᴡz, will vary 

along the beam axis but will be at a minimum at one point along the axis, called wo, when 

the beam is at its smallest area. This relationship is illustrated in Figure 5 and defined by 

the following equations: 
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  (5) 

 

Figure 5. Gaussian Beam Waist (from Bob 2009) 

Equation (5) describes the beam radius as a function of the beam waist at its 

smallest point and depends on the wavelength used and the distance the laser is traveling. 

From equation (5) the wavelength used will have an impact on the beam waist and 

decreasing the wavelength will reduce the diffraction of the beam. Beam expanders, 

which are lenses, can also be used to control the beam waist and reduce the diffraction of 

the beam. Finally, using the area of a circle in Equation (6) the spot size area at the lunar 

outpost receiver can be determined.  

 2( )A w z   (6) 
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Ultimately, the goal of these equations and their application to the solar power satellite 

architecture is to understand how the laser beam will spread out over the desired distance 

and to determine the size of both the solar power satellite transmitter and lunar outpost 

receiver. 

With the understanding of laser beam propagation and its dependence on 

wavelength, the choice of laser technology can be determined. Laser wireless power 

transfer has a significant degree of interdependence between the laser transmitter and 

receiver for a given laser material. The choice of laser technology will generate a 

particular wavelength that the receiver must be able to handle. The wavelength range for 

different laser materials is shown in Figure 6.  

 

Figure 6. Spectral Lines of a Variety of Laser Materials (from Command 
2005) 

For this thesis on the feasibility of a solar-powered satellite providing power to a 

lunar outpost, a choice of laser transmitter and associated wavelength, as well as receiver 

technology must be made. Two laser technologies were considered to understand their 
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impacts on the solar power satellite architecture: the stretched lens array (SLA) and the 

Vertical Multi-Junction (VMJ) photovoltaic cell.  

Since the 1980s, several agencies including NASA and ENTECH have worked on 

a photovoltaic concentrator system for both solar and laser receivers called the stretched 

lens array (Piszczor 2006). The SLA was specifically designed with the idea of using this 

technology in the dark craters at the lunar poles (O’Neill 2006). The SLA uses a straight 

line array of arched lens to concentrate and focus light up to 8.5X its original intensity on 

triple junction photovoltaic cells as seen in Figure 7 and Figure 8. 

 

Figure 7. Stretched Lens Array Prototype (from O’Neill 2006) 

 

Figure 8. SLA on ATK Space’s SquareRigger Platform (from O’Neill 2006) 

While both the solar and laser versions of this technology will be used for the 

architecture analysis, the real importance to this thesis are the figures of merit for the 
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laser version of the SLA. During hardware tests and using a laser wavelength of 805 nm, 

the SLA had an operational array efficiency of 41.4% for collection and conversion, with 

a power density of 690 W/m2 (0.069 W/cm2) and a specific mass to area density of 0.86 

kg/m2 (O’Neill 2006).  

Another recent receiver technology for laser power transmission is the VMJ. The 

VMJ will act as the lunar outpost receiver and has the ability to continuously convert a 

high-intensity laser beam into electricity. The VMJ’s unique ability is based on 

photovoltaic technology using a serially-connected array of small silicon junction cells 

that have the ability to directly convert high-intensity optical energy into electrical energy 

(Goradia 1977). Normal photovoltaic cells convert sunlight at 1 astronomical unit (a.u.) 

which is equivalent to 1370 W/m2 from optical energy to electrical energy. However, the 

laser power transmission will be several orders of magnitude greater than one sun’s worth 

of irradiance. Therefore, for the application of laser wireless power transmission it is 

necessary to use a receiver that can handle high-intensity energy. Recent research 

conducted in 2011 on VMJ technology has created a receiver that can convert optical 

energy when flashed at solar irradiance levels as high as 2500 suns and equal to 211 

W/cm2 producing over 40 watts of electrical output which is a conversion efficiency of 

23% using a laser wavelength of 980 nm (Fast 2011). Figure 9 shows a schematic view of 

a silicon VMJ photovoltaic cell.  

 

Figure 9. A 40-Junction Silicon VMJ Photovoltaic Cell (from Raible 2011) 
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Recent experimental hardware results using a single photovoltaic VMJ cell under 

high intensity continuous-wave laser irradiance produced 13.6 W/cm2 with an optical to 

electrical conversion efficiency of 24% using a laser wavelength of 976 nm (Raible 

2011). These results lead to a potential VMJ receiver size of 1 m2 which can convert 

approximately 136 kW of energy (Raible 2011). Figure 10 shows optical bench testing 

for a VMJ prototype.  

 

Figure 10. Optical Bench Setup during the Laser Test (from Fast 2011) 

Missing from the papers done by Fast and Raible was a key figure of merit for 

VMJ technology which was the specific mass to area density (kg/m2). A research paper 

conducted on the trade space for photovoltaic cells by Fatemi in 2000 gave a realistic 

figure of merit of triple junction solar cells of  0.85 kg/m2 (Fatemi 2000). 

D. SOLAR POWER SATELLITE HISTORY AND ARCHITECTURES 

Since the original idea of a solar power satellite by Dr. Glaser in 1968 there have 

been numerous studies trying to advance the concept to practical application. While most 

solar power satellite concepts are feasible, the amount of mass required to put a solar 

power satellite into orbit; therefore, the cost of each concept has proved unreasonable. 

However, the trend line for the amount of power per unit mass for each successive solar 



 25

power satellite concept has been in the direction of reducing mass and increasing power. 

The application of this technology is inevitable. The first data point for the key figure of 

merit of total system power per unit mass is from Dr. Glaser’s initial concept. Dr. Glaser 

used a satellite with a solar conversion area of 270 km2 (or a satellite with a diameter of 

11.5 miles) with just a solar conversion area estimated mass of 1.8 x 108 lbs (or 81.5 x 106 

kg) using a photovoltaic conversion efficiency of 24% to satisfy the electrical demand of 

the northeastern United States with an estimated annual power consumption in 1980 of 

0.50 x 1012 kW-hrs (Glaser 1968). This results in a satellite solar conversion power per 

unit mass of 0.7 kW/kg. Once other satellite subsystem masses are included, the total 

satellite power per unit mass would likely drop significantly below 0.5 kW/kg. An 

important reference point for economic viability for terrestrial solar power satellites is 

above 1 kW/kg for good returns on investment or above 0.5 kW/kg total system power 

per unit mass for competitive economic viability (Mankins 2002). 

From 1976 to 1980, the Department of Energy in conjunction with NASA 

conducted the first major study of a solar power satellite architecture, which became 

known as the 1979 Reference Design (NASA 1978), as illustrated in Figure 11. 
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Figure 11. 1979 SPS Reference System Concept: 5 GW Power Output, 
Geostationary Earth Orbit-Based Systems (from Mankins 2002) 

The 1979 Reference System concept produced 5 GW of electrical power using 

gallium-aluminum-arsenide (GaAlAs) photovoltaics and utilized the 2.45 GHz 

wavelength to ground receiving rectennas with a total spacecraft system mass of 34 x 106 

kg (NASA 1978). This resulted in a total system power per unit mass of 0.15 kW/kg. The 

1979 reference designed was composed of large erected structures using dozens of launch 

vehicles and a construction facility in low earth orbit utilizing hundreds of astronauts. 

Ultimately, the U.S. National Research Council and the now defunct Congressional 

Office of Technology Assessment concluded that while this concept was feasible, the 

cost was unachievable. It had a cost estimate of $250 billion in 1996 dollars (Mankins 

1997).  

From 1995 to 1997 NASA conducted an exhaustive study and re-examination of 

technologies and system concepts for solar power satellites called the “Fresh Look” study 

(Mankins 1997). Out of this study was a new solar power satellite concept called the 
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SunTower which is a highly-modularized and gravity-gradient stabilized architecture as 

shown in Figure 12.   

 

Figure 12. The “SunTower” Solar Power Satellite Concept  
(from Mankins 2002) 

The SunTower SPS concept used the 5.8 GHz frequency with an initial 1000 km 

sun-synchronous orbit paired with a ground receiver sized to handle between 100 to 400 

megawatts. The cost for a 250 MW SunTower platform was estimated at $15 billion 

dollars and designed with a total system power per unit mass of 1 kW/kg (Mankins 

2002). 

After the 1997 Fresh Look study concluded that solar power satellite concepts 

were reaching technical maturity and economic viability, NASA began the Space Solar 

Power (SSP) Exploratory Research and Technology (SERT) program which ran from 

1999 to 2000. The goal of the SERT program was to define a strategic technology 

roadmap to deliver large megawatt systems using wireless power transmission for both 

government science missions and commercial markets (Howell 2000). Out of the SERT 
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program came the solar power satellite concept called the Integrated Symmetrical 

Concentrator (ISC) as illustrated in Figure 13.  

 

Figure 13. Integrated Symmetrical Concentrator SPS Concept  
(from Belvin 2010) 

The ICS was modeled for a full scale 1.2 GW delivered to the grid system with a 

wireless power transmission efficiency of 37% from geostationary orbit using a 5.8 GHz 

microwave frequency. The ICS had with a 7450 meter diameter rectenna and the 

resulting mass was 17,076 kg or 17 metric tons (Carrington 2000). The ISC concept was 

designed with a total system power per unit mass figure of merit of 1 kW/kg.  

Completed in 2011, a group of academics studied the impact space solar power 

might have to satisfy the global energy demand in the 21st century called the First 

International Assessment of Space Solar Power (Mankins 2011). Their goal was to assess 

the technology readiness level and risks associated with various solar power satellite 

concepts and to build a technology roadmap that might lead to the first demonstration and 

operational solar power satellites. This study evaluated numerous concepts and concluded 

that three concepts were highly promising, that there were no fundamental technical 
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barriers, and that the primary issue was the economic viability of solar power satellites. 

Information from this study was included in the thesis for two reasons; it provided a 

suitable functional architecture and included an exceptional systems analysis 

methodology using figures of merit for elements in the functional architecture. A 

modified version of this functional architecture and figure of merit methodology will be 

used in Chapter III of this thesis.  

To evaluate and compare different solar power satellite concepts it was necessary 

to define a common functional architecture grouped into primary SPS platform systems, 

secondary SPS platform systems, ground systems, and supporting systems/infrastructure 

elements. The generic functional architecture used in the International Study can be seen 

in Figure 14. As seen in Figure 14, the solar power satellite was broken into five 

elements, to include the solar power generation system, the power management and 

distribution system, the thermal management system, wireless power transmitter, and the 

wireless power transmission receiver. The generic functional breakdown also included 

the launch system, in-space transport system, and ground assembly and operations 

infrastructure.  

 

Figure 14. Generic SPS Functional Architecture (from Mankins 2011) 
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Given this functional architecture, the systems analysis methodology identified 

figures of merit for each element in the system and the interrelationship between the 

elements’ figures of merit, as seen in Figure 15. In order to represent just the solar power 

satellite, the study used 31 figures of merit, as seen in Figure 16.  

 

Figure 15. Interrelationship of SPS Element Figures of Merit  
(from Mankins 2011) 
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Figure 16. Space Solar-Power Selected Figures of Merit (after Mankins 2011) 

Under the NASA Innovative Advanced Concept Program conducted from 2011 to 

2012, an innovative solar power satellite concept was developed that mitigated many of 
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the economic viability problems identified in the First International Assessment of Space 

Solar Power. The primary editor of the international assessment and principal investigator 

for SPS-ALPHA report was John C. Mankins. The Solar Power Satellite via Arbitrarily 

Large Phased Array (SPS-ALPHA) project’s goals were to do an analytical proof of 

concept backed by an end-to-end systems analysis, identify the key technology 

challenges using figures of merit, and finally conduct an economic viability of the 

concept (Mankins 2012). The SPS-ALPHA concepts can be seen in the right of Figure 17 

with earlier solar power satellite concepts. 

 

Figure 17. Solar Power Satellite Concepts and Two Versions of the New SPS-
ALPHA Concept (from Mankins 2012) 

The SPS-ALPHA concept used the functional architecture and system analysis 

methodology of figures of merit from the international assessment to reach their 

conclusions. To limit the mass impact, the SPS-ALPHA concept used a very modular 
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design due to recent technological advances to deal with the power management and 

thermal management issues inherent in large solar power satellite designs. Two solar 

power satellite concepts were chosen for data points for the key figure of merit of total 

system power per unit mass. The first SPS-ALPHA concept was a 200 kW delivered to 

the grid low earth orbit system using the 2.45 GHz frequency and an end-to-end 

efficiency of 10% and final mass of 16,768 kg or 16.8 metric tons (Mankins 2012). The 

total system power per unit mass was 0.12 kW/kg. The largest and most advanced version 

of the SPS-ALPHA concept was for a 2 GW delivered to the grid geostationary solar 

power satellite using the 2.45 GHz frequency with an end-to-end efficiency of 10% with 

a total mass of 25,260,800 kg or approximately 25,260 metric tons. This results in a total 

system power per unit mass of 0.79 kW/kg. 

E. LUNAR EXPLORATION RESEARCH 

The National Research Council (NRC), in 2007, at the request of NASA, 

produced a report called “The Scientific Context for Exploration of the Moon” (Board 

2007) for a lunar exploration program that provided global access to the surface with a 

combined human and robotic architecture. The underlying premise of the NRC report 

which was for a global, high mobility, and long duration mission, was a significant 

departure from prior lunar scientific missions that had been limited to the nearside 

equatorial region for short duration trips. It is important to note that most of the Moon has 

never been explored either at the far side, along the western limb, or in the polar regions. 

The NRC report captured the scope of the science to be done at the Moon within eight 

key scientific concepts with 35 prioritized scientific goals with four to five goals per 

scientific concept (Board 2007). The fundamental question after completing the NRC 

report was where on the lunar surface should a spacecraft and astronaut land to satisfy as 

many of the scientific goals as possible. To address this question, NASA created the 

Lunar and Planetary Institute (LPI) and Johnson Space Center (JSC) Center for Lunar 

Science and Exploration to conduct a landing site survey using the NRC science concepts 

as their selection criteria (Kring 2012). For five years, eight teams, each assigned a 

scientific concept, evaluated the lunar surface to create landing sites where the scientific 

goals for each concept could be addressed. The results were a global assessment and a 
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comprehensive landing site study which recommended hundreds of locations to land to 

satisfy specific scientific goals with several sites being uniquely scientifically rich. 

However, one landing site stood out. That site was the Schrödinger basin within the 

South Pole-Aitkin Basin (SPA Basin) on the lunar far side as seen in Figure 18 and 

Figure 19.  

 

Figure 18. Location of the SPA Basin (after Kring 2012) 

 

Figure 19. The Three Landing Sites and Corresponding 10 km (20 km return 
trip) EVA Radius for Schrödinger (from Kring 2012) 
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It was determined that at this location the first and second priorities of the NRC 

report could be accomplished as well many of the scientific goals of the eight scientific 

concepts within the 2,500 km diameter of the South Pole-Aitkin basin. Another 

significant scientifically rich location was the Amundsen crater near the South Pole 

which was singled out due to the polar volatiles research that could be accomplished. 

Given the selection of the SPA Basin, a feasibility assessment of all science concepts 

within the SPA Basin was added to the Landing Site report as a distinct section.  

F. ADDITIONAL FIGURES OF MERIT 

In order to compare different solar power satellite concepts a set of common 

figures of merit are required which include the solar power satellite cost per kilogram, 

power per unit mass, and lunar cost per unit mass which is the cost to place 1 kilogram on 

the lunar surface. The solar power satellite cost per kilogram in both the First 

International Assessment on Space Solar Power and the SPS-ALPHA concept used a 

figure of merit of $100,000 per kg (Mankins 2011). As a point of comparison the block-

buy of the fifth and sixth Advanced Extremely High Frequency (AEHF) which is a highly 

complex protected communications satellite was $1.93 billion (Ferster 2012). AEHF 

satellites have a mass of 6,168 kg, which results in a satellite cost per kilogram of 

approximately $156,000 (Krebs 2015). The choice of a $100,000 per kilogram used in 

this thesis for a solar power satellite seems reasonable since the design of a solar power 

satellite is expected to be simpler than an extremely complex protected communications 

satellite. The next figure of merit required is the total system power per satellite mass 

(kW/kg). This parameter is especially helpful in understanding how much power can be 

produced for each kilogram of satellite mass, a high-efficiency and low mass solar power 

satellite with have a figure of merit greater than 200 watts per SPS kilogram (0.2 kW/kg) 

(Mankins 2011). The final common figure of merit is the lunar cost per unit kilogram 

which is the cost to place one kilogram safety on the lunar surface. From the Parametric 

Model of a Lunar Base for Mass and Cost Estimates by Peter Eckart stated that the cost 

to land mass on the Moon is on the order of five to 10 times higher than the cost per unit 

mass to LEO (Eckart 1996). The 1996 cost per unit mass for 1 kg to LEO was $10,000 

(Eckart 1996). A lunar cost per unit kilogram of $100,000 was used (Eckart 1996). In 
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addition to the common figures of merit, the solar power generation system will need two 

figures of merit for collection efficiency and DC to microwave/laser efficiency. The solar 

version of the SLA will be used as the photovoltaic technology on the SPS for both 

wireless power transmission technologies which has an operational array efficiency of 

25% (O’Neill 2006). The SLA collection efficiency will turn approximately 25% of the 

incoming sunlight into direct current (DC) which will be converted to microwave and 

laser power with a conversion efficiency of 78% (Tanwar 2013) and 80% (Summerer 

2009), respectively. 

G. LUNAR OUTPOST POWER REQUIREMENT 

A lunar outpost for human exploration of the Moon with long duration and high 

mobility missions will require a significant amount of power. As mentioned in the 

introduction the International Space Station is a useful reference point as six crew 

members require approximately 100 kW of energy (Wells 2009). In addition to the ISS 

reference point, this power problem has been studied extensively in the Lunar Base 

Handbook where even a minimal permanent base requires 50 kW and up to one megawatt 

for large bases (Eckart 1999). The challenge is overcoming the two-week lunar night 

when using surface photovoltaics in combination with an energy storage system. A 

minimal base at a polar site with a 50 kW power requirement requires an approximate 

11,000 kg regenerative fuel cell storage system, and an equatorial lunar base has an 

energy storage mass of 17,000 kg (Kare 2004). The mass estimates by Kare match the 

numbers stated early by Brinker at 34,350 kg for a 100 kW lunar base. In the following 

section, this thesis will assume a minimum power requirement for a lunar outpost of 100 

kW and will vary the power requirement to understand the impact on the solar power 

satellite system mass and cost. A research paper on the comparison of different power 

generation methods showed that laser based approaches exceed other methods when 

power requirements are greater than 300 kW (Bozek 1993). 

H. LAUNCH VEHICLES 

Two launch vehicles were chosen to understand their impact on the total system 

cost and on the upper boundaries of the solar power satellite mass. The two launch 
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vehicles selected were the Space Launch System (SLS) and Falcon 9 Heavy. The SLS is 

a heavy launch vehicle designed by NASA and meant to be upgraded over time. The first 

SLS version called Block 1, will be capable of putting 70,000 kg into low Earth orbit or 

25,000 kg in a trans-lunar injection (TLI) orbit for an estimated cost of $600 million 

dollars (Skran 2015). In comparison, the SpaceX Falcon 9 Heavy, a commercially 

developed heavy launch vehicle, has an estimated low Earth orbit payload of 53,000 kg 

or a 13,200 kg trans-lunar injection orbit with an estimated price of $158 million dollars 

(Skran 2015).  

With the mass of the launch vehicles at the trans-lunar injection point a final 

propulsive maneuver will need to be executed which will decrease the amount of mass 

available for the solar power satellite payload. The ideal rocket equation (7) can be used 

to determine the mass impact of changing the orbit from a trans-lunar injection to a low 

lunar orbit. 

 ln initial
sp earth
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v I g

m
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where the Δv (delta-v) is the change in velocity required to reach a new orbit, Isp is the 

specific impulse which is a measure of the rockets efficiency, gearth is the gravitational 

constant of the Earth, minitial is the mass at the trans-lunar injection point, and mfinal is the 

mass after the propulsive maneuver to enter lunar orbit and subsequently the available 

mass for the solar power satellite.  

The delta-v required to change an orbit from trans-lunar injection to a low lunar 

orbit is 0.8 km/s (Biesbroek 2000). The gravitational constant of the Earth is 9.807 m/s2. 

The specific impulse is determined by the space propulsive technology used. Two 

propulsive technologies were chosen to understand their impacts to the solar power 

satellite available mass. The first propulsive technology used was a traditional chemical 

rocket with an average specific impulse 225 seconds (Buchheim 2007). The second 

propulsive technology selected uses hall current thrusters - a type of ion engine. Hall 

current thrusters (HCT) have an outstanding specific impulse and greater flexibility than 

traditional chemical rockets; however, their thrust is small and applied over a longer time 
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span. If the goal is to reach the destination quickly, then traditional chemical rockets are 

required. Recent data from the use of hall current thrusters on the AEHF satellite showed 

a typical specific impulse used of approximately 2100 seconds (Welander 2001). When 

applying the rocket equation to the TLI mas of the Falcon 9 Heavy and solving for mass 

final using traditional chemical propulsion, the final mass resulted in a decrease to 

9,186 kg remaining for the payload, and with hall current thrusters, the final mass was 

12,697 kg. When applying the rocket equation to the TLI mass of the SLS Block 1 and 

solving for mass final using traditional chemical propulsion, the final mass resulted in a 

decrease to 17,397 kg remaining for the payload, and with hall current thrusters, the final 

mass was 24,047 kg. These results show that a low energy and long duration transfer will 

be required for inefficient and therefore high mass solar power satellites. 
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III. SYSTEM ARCHITECTURE 

A. INTRODUCTION 

By identifying the top-level architecture tradespace and then using the 

methodology from the First International Assessment of Space Solar Power presented in 

Chapter II, the requirements of the system will be identified, a functional architecture 

created, the interrelationship of the elements in the functional architecture modeled, and 

figures of merit identified for each element. This methodology will allow a quantitative 

analysis of different architectures and facilitate varying the parameters to understand the 

sensitivity of the architecture to changing parameters or to seek system cost reductions. 

B. ARCHITECTURE TRADESPACE 

As identified throughout the background information, there are many system level 

trades that must be conducted. These are represented in Figure 20. The first system trade 

is the location of the lunar outpost at either the South Pole or South Pole-Aitkin Basin. 

The choice at this tradespace is to maximize scientific value but as identified later in 

Chapter IV, results in a larger constellation size to ensure 100% coverage if the solar 

power satellite concept for power generation is used. Given the outpost location, the next 

tradespace is the choice of power generation technology. The options here include 

surface photovoltaics with complementary batteries, nuclear power, or a solar power 

satellite. The tradespace includes the mass of the batteries in the surface photovoltaics 

and the safety issues with the nuclear power as discussed in the background chapter.  

Given the selection of solar power satellite, the type of orbit is the next 

architecture trade. The three orbits identified, low lunar orbit, halo orbit, and frozen 

elliptical orbit will have several impacts on the architecture. If the low lunar orbit is 

selected, a large number of satellites would be necessary to ensure coverage since each 

satellite would have only limited access per orbit to the lunar outpost; however, the size 

of the solar power satellite transmitter and lunar receiver would be at a minimum. A halo 

orbit at the L1 Lagrange point at a distance of 57,000 km would drastically increase the 

solar power satellite mass through the size of the required transmitter and lunar receiver. 
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As identified in the background chapter, the frozen elliptical orbit provides the best 

coverage and orbital distance.  

With the decision of a solar power satellite the coverage requirement impacts the 

architecture. As discussed later in Chapter IV, if the requirement is for continuous power 

with 100% coverage at the lunar outpost, then the number of satellites in the constellation 

will increase. As an option in the architecture but not analyzed in this thesis, is for a 

smaller constellation size augmented by a surface energy storage system. The next issue 

in the tradespace is the type of wireless power transmission of either microwaves or laser. 

The choice of wireless power transmission will have an impact on the mass of the 

satellite and the size of the lunar receiver which both increase system cost. Finally, with 

the choice of wireless power transfer influencing the mass of the solar power satellite, the 

tradespace for the launch vehicle can be understood. 

 



 41

 

Figure 20. Architecture Trades 
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C. REQUIREMENTS 

The operational view identifies the unique elements of the scenario and the 

interaction between the architecture and the environment. The operational view in Figure 

21 is a depiction of the scenario of a solar power satellite in orbit around the moon 

collecting and converting sunlight and transmitting this energy via wireless power 

transfer to a lunar outpost receiver. The user of this system will be astronauts operating 

from a lunar base. The requirements for electrical power at the lunar base is for a 

continuous energy supply with minimum energy storage requirements.  

 

Figure 21. Operational View 

 

The interaction between the environmental inputs and system elements can be 

visualized with the use case diagram in Figure 22. Ultimately, from the initial system 

Sun 



 43

input of sunlight, the final system output is usable electricity to astronauts. In between the 

initial input and final output, the solar power satellite will have to collect, covert, target, 

and transmit energy to a lunar receiver which has to collect and convert the energy. 

 

Figure 22. System Use Case 

D. FUNCTIONAL ARCHITECTURE 

A modified version of the functional architecture will be used from the First 

International Assessment of Space Solar Power illustrated in Figure 23. The functional 

architecture simplifies the solar power satellite into three elements, the solar power 

generation system, the SPS platform, and the wireless power transmission system. The 

SPS platform technologies system includes the power management and distribution 

system, the satellite supporting structures, the gimbaling system, and thermal 

management system. Outside of the solar power satellite are the launch vehicle and lunar 

receiver.  
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Figure 23. SPS Functional Architecture 

E. INTERRELATIONSHIP OF FUNCTIONAL ARCHITECTURE 

Understanding the relationship between the elements in the functional architecture 

allows the comparison of different concepts required to understand the available 

tradespace. The relationship between the elements in the functional architecture can be 

seen in Figure 24.  
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Figure 24. Relationship of Functional Elements 

From Figure 24 the choice of lunar outpost site and the power requirement of the 

outpost are the initial parameters identified. Then, given the inefficiencies in the solar 

power generation, wireless power transmission, and lunar receiver, an end-to-end 

efficiency can be calculated. This inefficiency will burden the solar power satellite 

increasing the amount of power the satellite will have to produce to deliver the required 

power level at the outpost. From the SPS power requirement, the mass of the satellite can 

be determined which is bounded by the trans-lunar injection mass capacity of the launch 

vehicle. The cost of the SPS system can be calculated when the mass of the satellite is 

determined and the cost of the satellite, lunar receiver, and launch vehicle will inform the 

total system cost.  

Given the lunar outpost site and the orbit type, the constellation size can be 

determined to provide 100% coverage of the outpost. With the orbit type selected, the 

distance from the lunar outpost is calculated, and with the selection of the transmission 

frequency, the size of the transmitter can be determined. Since the transmitter and 

receiver are related through equation (3), the size of the receiver diameter can be 
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calculated. The receiver diameter is related to the receiver cost which influences the total 

system cost. System cost is used to determine the choice of satellite architecture. 

F. ANALYSIS PLAN - FIGURES OF MERIT 

The following figures of merit for elements of the solar power satellite system 

will be used to analyze the feasibility of the microwave and laser concepts and the 

architecture trades. The lunar outpost location is the South Pole-Aitkin Basin at 56˚ 

South, 180˚ East (Kring 2012). Given this location and the use of the frozen elliptical 

orbit (Equation 1) the worst case distance from the solar power satellite to the lunar 

outpost is 9881 kilometers. Two figures of merit for the solar power satellite are outlined 

in Table 2.  

Table 2. Solar Power Satellite Figures of Merit 

Figure of Merit Value Reference 

SPS Power per Unit Mass 0.2 kW/kg (Mankins 2011) 

SPS Cost per Unit Mass 100,000 $/kg (Mankins 2011) 

 

Table 3 shows the figures of merit for the microwave solar power satellite with 

the appropriate microwave receiver. The first four microwave figures of merit give the 

end-to-end efficiency of the microwave concept. The remaining three figures of merit 

will show the impact the microwave receiver has on the feasibility of the microwave SPS 

concept. 
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Table 3. Microwave Figures of Merit 

Figure of Merit Value Reference 

RF to DC Conversion Efficiency 72% (Marzwell 2008) 

RF Collection Efficiency 93% (Marzwell 2008) 

DC to RF Conversion Efficiency 78% (Tanwar 2013) 

Solar Collection to DC Efficiency 25% (O’Neill 2006) 

Receiver Conversion Density 1 W/cm2 (Marzwell 2008) 

Receiver Mass per Unit Area 0.16 kg/m2 (Brown 1987) 

Receiver Lunar Cost per Unit Mass 100,000 $/kg (Eckart 1996) 

 

Table 4 shows the laser figures of merit for the laser solar power satellite with 

appropriate laser receiver. The first four laser figures of merit give the end-to-end 

efficiency of the laser concept. The remaining three figures of merit will show the impact 

of the laser receiver on the feasibility of the laser SPS concept. 

Table 4. Laser Figures of Merit 

Figure of Merit Value Reference 

Laser to DC Conversion Efficiency 45% (O’Neill 2006) 

Laser Collection Efficiency 92% (O’Neill 2006) 

DC to Laser Conversion Efficiency 80% (Summerer 2009) 

Solar Collection to DC Efficiency 25% (O’Neill 2006) 

Receiver Conversion Density 0.069 W/cm2 (O’Neill 2006) 

Receiver Mass per Unit Area 0.86 kg/m2 (O’Neill 2006) 

Receiver Lunar Cost per Unit Mass 100,000 $/kg (Eckart 1996) 

 

Table 5 shows the figures of merit for the Falcon 9 Heavy launch vehicle. The 

number of launches will be equal to the number of satellites and the available launch 

vehicle mass from trans-lunar orbit to low lunar orbit will be calculated when using the 

hall current thrusters (HCT). 
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Table 5. Launch Vehicle Figures of Merit 
 

Figure of Merit Value Reference 

Launch Vehicle Cost $158M per Launch (Skran 2015) 

Launch Vehicle Mass to TLI 13,200 kg (Skran 2015) 

Delta-V Required from TLI to LLO 800 m/s (Biesbroek 2000) 

HCT Specific Impulse 2,100 sec (Welander 2001) 
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IV. DATA ANALYSIS 

A. INTRODUCTION 

In this chapter the background information on lunar orbits, the theoretical physics 

identified for microwave and laser wireless power transfer, and the key figures of merit 

for selected technologies will be used to analyze different solar power satellite concepts. 

The first analysis presented will be the orbital coverage and access data generated by 

modeling the outpost location and frozen elliptical orbit in STK. The second analysis 

presented will be the system cost, mass and power thread calculations using a SPA Basin 

lunar outpost with a four satellite constellation employing a microwave or laser solar 

power satellite. The final analysis will show the sensitivity of the SPS concepts to 

changes in key parameters that drive down cost and mass. This analysis will be used to 

draw conclusions in Chapter V. 

B. ANALYSIS OF ARCHITECTURES 

The orbital analysis was conducted for two lunar outpost locations, the South Pole 

and the South Pole–Aitken Basin (SPA Basin) (56˚ South, 180˚ East). The South Pole–

Aitken basin is a huge impact crater on the far side of the Moon roughly 2,500 kilometers 

(1,600 mi) in diameter and 13 kilometers (8.1 mi) deep. It is one of the largest known 

impact craters in the solar system and as identified in the background information a 

science-rich environment for lunar exploration.  

The first modeling conducted was to determine the lighting conditions at the 

South Pole and SPA Basin to determine if the use of surface solar photovoltaics was an 

architecture option. Figure 25 and Figure 26 from STK show the lighting conditions at 

the South Pole and SPA Basin only receiving sunlight 43% of the time, each with 

different lighting intervals. The use of surface photovoltaics with an energy storage 

system at these locations would require a large mass energy storage system as mentioned 

in the background chapter.  
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Figure 25. South Pole Lighting Times 
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Figure 26. SPA Basin Lighting Times 
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The orbit type modeled was the frozen elliptical orbit as defined in Equation (1). 

This orbit has several unique features including a 10-year life with few perturbations 

from the three-body orbital dynamics of the Earth-Moon-Sun system. This resulted in a 

three-satellite constellation which provided continuous coverage for a South Pole lunar 

outpost with a mean pass of 10.6 hours per satellite and often continuous two-fold 

satellite coverage. When the minimum elevation angle for the lunar outpost is changed to 

20˚ for access to the satellite the mean pass is 9.0 hours per satellite. See Table 6. The 20˚ 

minimum elevation constraint was selected because the lunar outpost will most likely be 

at the bottom of crater. 

Table 6. South Pole Satellite Access 

 

The 20˚ minimum elevation angle was chosen as a more realistic constraint on the 

lunar outpost and the three-satellite frozen elliptical orbit constellation still maintains 

continuous coverage as seen in Figure 27. The constellation as modeled is shown in 

Figure 28 and the associated ground track in Figure 29. The worst case range from the 

satellite using this orbit to the South Pole lunar outpost is 9,108 km as seen in Table 7.  
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Table 7. South Pole Satellite Azimuth, Elevation, and Range 
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Figure 27: Coverage for South Pole using Three-satellites 
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Figure 28: South Pole Three-Satellite Constellation 

 
Figure 29: Ground Track for Three-Satellite Constellation South Pole Coverage 

A challenge arises, however, when this orbit is used for the South Pole-Aitken 

Basin lunar outpost with a 20˚ minimum elevation angle. The SPA lunar outpost is 

located at 56˚ S, 180˚ E, and therefore rotates out of view of the classic three-satellite 

constellation used for the South Pole lunar outpost. Table 8 and Figure 30 show an 

approximate 90% coverage where the classic three-satellite constellation drops coverage 
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for a few days each month. Figure 31 shows the ground track when the classic three-

satellite constellation does not cover the SPA lunar outpost. 

 

Table 8. Coverage Statistics for SPA Basin Outpost using Class Three-
Satellite Constellation 
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Figure 30: South Pole-Aitken Basin Coverage using Three-Satellites 
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Figure 31: Ground Track for Three-Satellite Constellation for SPA Coverage 

In order to cover the SPA Basin lunar outpost, it is required to add another plane 

of satellites to the constellation. Initially, two planes of three satellites each was designed 

and analyzed. Figure 32 show continuous coverage of the SPA lunar outpost when using 

this constellation design. Figure 33 shows the six satellite architecture with two planes of 

satellites offset by 180˚ and Figure 34 shows the resulting ground track.  
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Figure 32: SPA Coverage Using Six-Satellites (Three in each plane offset by 180˚) 
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Figure 33: SPA Six-Satellite Constellation 

 
Figure 34: Ground Track for Six-Satellite Constellation for SPA Coverage 

Even though this constellation of two planes with three satellites each provides 

continuous coverage, it leads to a large system cost. Therefore, another satellite 

constellation was designed and analyzed with two planes of two satellites to determine if 

it provided continuous coverage with reduced constellation size. Figure 35 shows 

continuous coverage of the SPA lunar outpost given the two-plane two-satellite design. 

Figure 36 shows the two-plane two-satellite design and Figure 37 shows the resulting 

ground track. 
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Figure 35: SPA Coverage Using Four Satellites (Two in each plane offset by 180˚) 
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Figure 36: SPA Four-Satellite Constellation 

 

Figure 37: Ground Track for Four-Satellite Constellation for SPA Coverage 

Using the two-plane two-satellite constellation, the mean pass for each satellite is 

7.7 hours as seen in Table 9, and the worst case range from the satellite to the lunar 

outpost is 9881 km is shown in Table 10. 
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Table 9. SPA Basin Satellite Access 

 
 

Table 10. SPA Basin Satellite Azimuth, Elevation, and Range 

 
 

After modeling three different satellite architectures for the South Pole and SPA 

Basin, the resulting satellite constellation which provides coverage for the highest 

subjective value of scientific research at minimal additional cost is the four-satellite 

constellation with two planes of two satellites at the SPA Basin. This satellite architecture 

was used in the system mass, cost, and power thread analysis. 

1. System Mass, Cost, and Power Thread Analysis 

With the satellite architecture and lunar outpost location chosen, the overall 

system mass, cost, and power thread analysis can be completed for the wireless power 

transmission options of microwave or laser. The inputs to this analysis included 

frequency/wavelength, worst case satellite range from the orbital analysis, the theoretical 

physics from the background chapter, and figures of merit from the system architecture 
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section. The analysis starts by using the lunar outpost power requirement and works 

backwards through the power thread chain to calculate an end-to-end efficiency. Using 

the end-to-end efficiency and SPS power requirement, the mass and cost of a single SPS 

is determined. The next parameter calculated is the receiver and transmitter sizes, and the 

cost of the lunar receiver considered. Finally, the launch cost and total system cost are 

calculated. The final output of the analysis is the total system cost which is used to 

determine the feasibility of the microwave and laser solar power satellite concepts. Table 

11 and Table 12 show the analysis for the microwave and laser calculations, respectively. 

Table 11. Microwave SPS System Analysis 

 

Microwave System Analysis

Constraits Value Units

Frequency 94 GHz

Wavelength 0.0032 m

Spacecraft Range 9881 km

Step 1: Calculate the end‐to‐end power efficiency and SPS power requirement

Value Units

Lunar Outpost Power Requirement 100 kW A

RF to DC Conversion Efficiency Figure of Merit 72% % B

Power Required due to RF to DC Conversion Efficiency C=A/B 139 kW C

RF Collection Efficiency Figure of Merit 93% % D

Power Required due to RF Collection Collection Efficiency E=C/D 149 kW E

Amount of Power in the Main Lobe of the Beam Figure of Merit 84% % F

Power Required due to Power in the Main Lobe of the Beam G=E/F 178 kW G

DC to RF Conversion Efficiency Figure of Merit 78% % H

Power Required due to DC to RF Conversion Efficiency I=G/H 228 kW I

Solar to DC Conversion Efficiency Figure of Merit 25% % J

Power Required due to Solar to DC Conversion Efficiency K=I/J 912 kW K

End‐to‐End Power Efficiency L=B*D*F*H*J 11.0% % L

SPS Power Requirement M=K 912 kW M

912 Hid Cell

Step 2: Calculate the mass and cost of the SPS.

Value Units

SPS Power per Unit Mass Figure of Merit 0.2 kW/kg N

SPS Mass O=M/N 4.6 mT O

SPS Cost per Unit Mass Figure of Merit 100,000 $/kg P

SPS Satellite Cost Q=O*P 456 $M Q

Step 1 Results: The end‐to‐end efficiency for the microwave power thread is 11% which results in a SPS power 

requirement of 912 kilowatts to deliver 100 kilowatts to the lunar outpost.
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Step 3: Calculate the optimum size of the microwave receiver Value Units

Conversion Density 1 Watt/cm
2

R

1 m
2

10,000 cm
2

S

E in Watts 149343 Watts T

U=T/(R*S) 15 m
2

U

Step 3 Result: The optimum microwave receiver area is 15 m
2

Step 4: Calculate the size of the SPS transmitter given the optimum size of the microwave receiver

Value Units

Receiver Diameter V=SQRT(U*4/π) 4.4 m V

Spacecraft Apogee 9881 km W

Frequency 94 GHz X

Speed of Light 3.00E+08 m/s Y

Wavelength Z=Y/X 0.0032 m Z

Using Main Lobe Diffraction Equation Transmitter Diameter 2.44=(V*AA)/(Z*W) 17646 m AA

Step 4.1: Balance the size of the lunar receiver and SPS transmitter diameters

Value Units

Transmitter Diameter 277 m BB

Using Main Lobe Diffraction Equation Receiver Diamter 2.44=(CC*BB)/(Z*W) 278 m CC

Step 4.2: Using the largest antenna of 22 meters launched on the SkyTerra‐1 satellite

Value Units

Transmitter Diameter 22 m DD

Using Main Lobe Diffraction Equation Receiver Diamter 2.44=(P*R)/(N*K) 3498 m EE

Step 5: Calculate the mass and cost of the lunar receiver using the 278 meter diameter

Value Units

Receiver Area FF=π*(CC/2)^2 60604 m
2

FF

Receiver Mass per Unit Area Figure of Merit 0.16 kg/m
2

GG

Receiver Mass HH=FF*GG 9697 kg HH

Receiver Lunar Cost per Unit Mass Figure of Merit 100,000 $/kg II

Receiver Lunar Cost JJ=HH*II 970 $M JJ

Step 4 Results: Using the optimum size of the lunar receiver results in an unacceptable large transmitter diamter of 17,646 

meters. Choosing to balance the size of the transmitter and receiver diameters which at 94 GHz and a distance of 9881 

kilometers results in a transmitter diameter size of 277 meters and a receiver diameter size of 278 meters.

Step 4.1: Even when balancing the diameters of the transmitter and receiver, a SPS transmitter diameter of 277 is 

exceptionally large. A more reasonable size of the transmitter based on the largest commerical antenna launched of 22 

meters on the SkyTerra‐1 satellite is selected.

Step 4.2 Results: The 22 meter transmitter diameter results in a lunar receiver diameter of 3500 meters. For the purposes 

of these calculations the 278 meter reciever diameter will be used as the 3500 meter diameter results in a significant 

receiver mass and cost.

Step 5 Results: Given the balance between the size of the SPS transmitter and lunar receiver, the cost of the receiver is 

$970 million which is more than the cost for a single SPS satellite
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Step 6: Calculate Trans‐Lunar Orbit (TLI) to Low Lunar Orbit (LLO)

Value Units

Mass Initial Figure of Merit 13200 kg KK

Delta‐V Figure of Merit 800 m/s LL

Specific Impulse Figure of Merit 2100 s MM

Earth Gravitational Constant Constant 9.807 m/s
2

NN

Mass Final OO=KK/e^(LL/MM*NN) 12697 kg OO

Change in Mass PP=KK‐OO 503 kg PP

Step 7: Calculate Launch Cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites QQ

Number of Launches RR=QQ 4 Launches RR

Cost per Launch Figure of Merit 158 $M/Launch SS

Launch Cost TT=RR*SS 632 $M TT

Step 8: Calculate the total system cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites UU

Cost per Satellite VV=Q 456 $M VV

Constellation Cost WW=UU*VV 1823 $M WW

System Cost XX=JJ+TT+QQ 3425 $M XX

Step 7 Results: The total launch cost for 4 satellites is $632 million dollars. The Falcon 9 Heavy cost was used and even 

though the mass of the Falcon 9 Heavy is 13,200 kg which could allow the launch vehicle to carry 2 satellites, this thesis 

assumes that the volume of the SPS especially given a 277 meter diameter transmitter, would use all of the Falcon 9 

Heavy's volume.

Step 8 Results: Using the cost of the lunar receiver, the launch cost, and the constellation cost, the total system cost for 

the microwave solar power satellite concept is $3.4 billion dollars.

Step 6 Results: Using the TLI mass of the Falcon 9 Heavy of 13.2 metric tons and solving for Mass final results in an available 

payload mass of 12,697 kg.
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Table 12. Laser SPS System Analysis 

 

Laser System Analysis

Constraits Value Units

Wavelength 805 m

Spacecraft Range 9881 km

Step 1: Calculate the end‐to‐end power efficiency and SPS power requirement

Value Units

Lunar Outpost Power Requirement 100 kW A

Laser to DC Conversion Efficiency Figure of Merit 45% % B

Power Required due to Laser to DC Conversion Efficiency C=A/B 222 kW C

Laser Collection Efficiency Figure of Merit 92% % D

Power Required due to Laser Collection Efficiency E=C/D 242 kW E

DC to Laser Conversion Efficiency Figure of Merit 80% % F

Power Required due to DC to Laser Conversion Efficiency G=E/F 302 kW G

Solar to DC Conversion Efficiency Figure of Merit 25% % H

Power Required due to Solar to DC Conversion Efficiency I=G/H 1208 kW I

End‐to‐End Power Efficiency J=B*D*F*H 8.3% % J

SPS Power Requirement K=I 1208 kW K

1208 Hide Cell

Step 2: Calculate the mass and cost of the SPS.

Value Units

SPS Power per Unit Mass Figure of Merit 0.2 kW/kg L

SPS Mass M=K/L 6.0 mT M

SPS Cost per Unit Mass Figure of Merit 100,000 $/kg N

SPS Satellite Cost O=M*N 604 $M O

Step 3: Calculate the size of the laser receiver Value Units

Conversion Density 0.069 Watt/cm
2

P

1 m
2

10,000 cm
2

Q

E in Watts 241546 Watts R

S=R/(P*Q) 350 m
2

S

Step 3 Result: The laser receiver is 350 m
2

Step 4: Calculate the size of the SPS transmitter radius given the size of the laser receiver

Value Units

Beam Waist Radius 1.0 m V

Wavelength 805 nm W

Spacecraft Apogee 9881 km X

Transmitter Radius Y=V*SQRT(1+(W*X/(PI()*V^2))^2) 2.72 m Y

Transmitter Area Z=PI()*r^2 23 m
2

Z

Step 1 Results: The end‐to‐end efficiency for the laser power thread is 8.3% which results in a SPS power requirement of 

1208 kilowatts to deliver 100 kilowatts to the lunar outpost.

Step 4 Results: Given the laser receiver area and the radius of the laser beam waist, the transmitter radius is 2.72 meters 

with a total area of 23 m
2
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Step 5: Calculate the mass and cost of the lunar receiver

Value Units

Receiver Area AA=S 350 m
2

AA

Receiver Mass per Unit Area Figure of Merit 0.86 kg/m
2

BB

Receiver Mass CC=AA*BB 301 kg CC

Receiver Lunar Cost per Unit Mass Figure of Merit 100,000 $/kg DD

Receiver Lunar Cost EE=CC*DD 30 $M EE

Step 6: Calculate Trans‐Lunar Orbit (TLI) to Low Lunar Orbit (LLO)

Value Units

Mass Initial Figure of Merit 13200 kg FF

Delta‐V Figure of Merit 800 m/s GG

Specific Impulse Figure of Merit 2100 s HH

Earth Gravitational Constant Constant 9.807 m/s
2

II

Mass Final JJ=FF/e^(GG/HH*II) 12697 kg JJ

Change in Mass KK=FF‐JJ 503 kg KK

Step 7: Calculate Launch Cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites LL

Number of Launches LL=MM 4 Launches MM

Cost per Launch Figure of Merit 158 $M/Launch NN

Launch Cost OO=MM*NN 632 $M OO

Step 8: Calculate the total system cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites PP

Cost per Satellite QQ=O 604 $M QQ

Constellation Cost RR=PP*QQ 2415 $M RR

System Cost SS=EE+OO+RR 3078 $M SS

Step 6 Results: Using the TLI mass of the Falcon 9 Heavy of 13.2 metric tons and solving for Mass final results in an available 

payload mass of 12,697 kg.

Step 7 Results: The total launch for 4 satellites is $632 million dollars. The Falcon 9 Heavy cost was used and even though 

the mass of the Falcon 9 Heavy is 13,200 kg which could allow the launch vehicle to carry 2 satellites, this thesis assumes 

that the volume of the SPS would use all of the Falcon 9 Heavy's volume.

Step 8 Results: Using the cost of the lunar receiver, the launch cost, and the constellation cost, the total system cost for 

the laser solar power satellite concept is $3.1 billion dollars.

Step 5 Results: Both the lunar receive and transmitter diameters are reasonable which leads to a receiver cost of $30 million 

dollars
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Table 12 shows the analysis when using the SLA Laser receiver, and as 

mentioned in the background information, the other receiver option was the VMJ receiver 

which has a higher conversion efficiency at 13.6 W/cm2 (136,000 W/m2) but a lower 

optical-to-electrical conversion efficiency of 23%. The result of using the VMJ receiver 

drastically impacts the total system cost due to the lower total end-to-end efficiency while 

decreasing the size of the lunar receiver from the exceptional conversion efficiency. This 

is not desirable given that the laser lunar receiver is not the cost driver to the laser system. 

Table 12 shows the analysis of the Laser SPS concept when using the four-

satellite frozen elliptical orbit, but as mentioned in the background information the L1 

Lagrange point could be used for lunar South Pole coverage with a reduced constellation 

size to two satellites. This greatly reduces the total system cost. Using a L1 satellite to 

lunar receiver distance of 57,000 km, results in a change only to the satellite transmitter 

diameter. The resulting transmitter diameter when using the L1 Lagrange point for the 

laser SPS concept is a diameter of approximately 29 meters. The L1 Lagrange point is a 

viable option for reducing the total system cost and should be considered.  

2. Sensitivity Analysis 

The power thread analysis for the microwave and laser concepts is summarized in 

the Table 13 including key figures of merit. With the baseline figures of merit, the 

microwave per satellite cost is less than the laser per satellite cost given the increased 

end-to-end efficiency; however, the microwave total system cost is greater than the laser 

system cost because the microwave receiver is large and costly. Before giving a final 

conclusion on the feasibility and selection of an architecture, a sensitivity analysis on key 

parameters was conducted to show a comparison between the concepts.  
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Table 13. Microwave and Laser SPS Summary 

  MICROWAVE LASER UNITS 

FREQUENCY  94 GHz 
WAVELENGTH  805 Nanometers (nm)
LUNAR OUTPOST POWER REQUIREMENT 100 100 kW 
SATELLITE APOGEE  9881 9881 km 
END‐TO‐END EFFICIENCY  11 % 8.3 % % 
SATELLITE POWER REQUIREMENT  912 1208 kW 
SATELLITE POWER PER UNIT MASS  0.2 0.2 kW/kg 
SATELLITE MASS  4.6 6.0 Metric Tons (mT)
SATELLITE COST PER UNIT MASS  100,000 100,000 $/kg 
SATELLITE COST  456 604 $M 
TRANSMITTER DIAMETER  277 5.45 Meters 
RECEIVER DIAMETER  278 21 Meters 
RECEIVER COST  970 30 $M 

RECEIVER LUNAR COST PER UNIT MASS 100,000 100,000 $/kg 

TOTAL LAUNCH VEHICLE COST  632 632 $M 
LAUNCH VEHICLE MASS TO TLI  13.2 13.2 Metric Tons (mT)
CONSTELLATION SIZE  4 4 Satellites 

TOTAL SYSTEM COST  3,425 3,078 $M 

 

a. Microwave Receiver Sensitivity 

Since the cost of the microwave receiver placed at the lunar outpost is driving the 

microwave system cost greater than the laser system, a sensitivity analysis was conducted 

on the receiver lunar cost per unit mass as seen in Table 14 and Figure 38. The receiver 

lunar cost per unit mass is the amount of money required to put a 1 kg on the Moon; this 

value was allowed to vary from the baseline value of $100,000 per kg to $50,000 per kg. 

From Figure 38, the microwave system becomes less expensive relative to the laser 

system when the receiver lunar cost per unit mass is below approximately $62,500 dollars 

per kg.  
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Table 14. Sensitivity of System Cost to a change in Lunar Receiver Cost per 
Unit Mass 

 
 

 

Figure 38. Microwave vs. Laser System Cost Comparison given a Change in 
Receiver Lunar Cost per Unit Mass 

The microwave SPS system has a transmitter diameter of 277 meters to produce a 

receiver diameter of 278 meters. This is an exceptionally large satellite transmitter. If the 

satellite transmitter was at a maximum value of 22 meters as identified in the background 

research the resulting lunar receiver diameter size would be 3,500 meters. The resulting 

total system cost would be $156 billion dollars and the receiver lunar cost per unit mass 

would have to be below $400 per kg to be economically feasible against the laser system 

Laser Microwave3078 3425

50,000$       3,063$           2,940$        

55,000$       3,064$           2,989$        

60,000$       3,066$           3,037$        

65,000$       3,067$           3,086$        

70,000$       3,069$           3,134$        

75,000$       3,070$           3,183$        

80,000$       3,072$           3,231$        

85,000$       3,073$           3,280$        

90,000$       3,075$           3,328$        

95,000$       3,076$           3,377$        

100,000$     3,078$           3,425$        

Lunar 

Receiver 

Cost per 

Unit Mass 

($/kg)

System Cost ($M)
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(Appendix A). It is unlikely that the cost per kilogram to land on the Moon would ever be 

this low. Using the Microsoft Excel goal/seek function with the 22 meter transmitter 

diameter and with the lunar receiver cost at $600 million while allowing the spacecraft 

distance to vary, resulted in a spacecraft distance of only 617 kilometers and a total 

system cost of $3,055 million (Appendix B).  

b. System Cost Sensitivity 

A comparison of the system cost for the microwave and laser concepts was 

conducted while varying the power requirement versus SPS power per unit mass, and 

power requirement versus SPS cost per unit mass. As expected, when the SPS power per 

unit mass increases, the total system cost decreases as illustrated in Table 15 and Table 

16. When the lunar outpost power requirement is increased 300 kW, the efficiency of 

both the microwave and laser concepts would have to increase their SPS power per unit 

mass to 0.35 kW/kg to remain under $5 billion for a total system cost. The rate of change 

given an increase in lunar outpost power requirement and SPS power per unit mass can 

be seen in Figure 39. When the power requirement at the lunar outpost is 100 kW, the 

laser concept remains the less expensive option across all SPS power per unit mass 

figures greater than 0.15 kW/kg. When the lunar base power requirement is 300 kW, the 

microwave system is the more economical option up to a SPS power per unit mass of 0.4 

kW/kg due to the higher end-to-end efficiency. 
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Table 15. Microwave System Cost Sensitivity to a Change in Power 
Requirement and SPS Power per Unit Mass ($M) 

 

 
 

Table 16. Laser System Cost Sensitivity to a Change in Power Requirement 
and SPS Power per Unit Mass ($M) 

 

 
 

3425 100 150 200 250 300 350 400 450 500 550

0.1 5249 7072 8896 10719 12543 14366 16189 18013 19836 21660

0.15 4033 5249 6464 7680 8896 10111 11327 12543 13758 14974

0.2 3425 4337 5249 6160 7072 7984 8896 9807 10719 11631

0.25 3060 3790 4519 5249 5978 6707 7437 8166 8896 9625

0.3 2817 3425 4033 4641 5249 5856 6464 7072 7680 8288

0.35 2644 3165 3686 4207 4728 5249 5770 6291 6812 7333

0.4 2513 2969 3425 3881 4337 4793 5249 5704 6160 6616

0.45 2412 2817 3223 3628 4033 4438 4843 5249 5654 6059

0.5 2331 2696 3060 3425 3790 4155 4519 4884 5249 5613

0.55 2265 2596 2928 3259 3591 3922 4254 4586 4917 5249

Microwave System Cost Sensitivity to a change in Power Requirement and SPS Power per Unit Mass ($M)

Lunar Power Requirement (kW)

SPS Power 

Per Unit Mass 

(kW/kg)

Legend Range

Green Less Than $5B

Yellow Greater Than $5B but Less Than $8B

Red Greater Than $8B

3078 100 150 200 250 300 350 400 450 500 550

0.1 5493 7924 10354 12785 15215 17646 20076 22507 24937 27368

0.15 3883 5508 7133 8759 10384 12010 13635 15260 16886 18511

0.2 3078 4300 5523 6746 7969 9191 10414 11637 12860 14083

0.25 2594 3576 4557 5538 6519 7501 8482 9463 10444 11426

0.3 2272 3093 3913 4733 5553 6373 7194 8014 8834 9654

0.35 2042 2748 3453 4158 4863 5568 6273 6979 7684 8389

0.4 1870 2489 3108 3727 4346 4964 5583 6202 6821 7440

0.45 1736 2287 2839 3391 3943 4495 5047 5598 6150 6702

0.5 1628 2126 2625 3123 3621 4119 4617 5115 5613 6112

0.55 1540 1995 2449 2903 3357 3812 4266 4720 5174 5628

Laser System Cost Sensitivity to a change in Power Requirement and SPS Power per Unit Mass ($M)

Lunar Power Requirement (kW)

SPS Power 

Per Unit Mass 

(kW/kg)

Legend Range

Green Less Than $5B

Yellow Greater Than $5B but Less Than $8B

Red Greater Than $8B
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Figure 39. System Cost Sensitivity to a Change in Power Requirement and SPS 
Power per Unit Mass 

A driving factor in the total system cost is the SPS cost per unit mass figure of 

merit which is the amount of money required to produce 1 kg of satellite mass. As 

mentioned in the background and as a point of reference, the AEHF satellite had a cost 

per unit mass of $156,000 per kg. Table 17 and Table 18 show sensitivity of the total 

system cost when the baseline SPS cost per unit mass is allowed to vary from $50,000 

per kg to $140,000 per kg. If the lunar base power requirement was increased to 300 kW 

and the total system cost was expected to be under $5 billon, the SPS cost per unit mass 

for the microwave system would have to be less than $60,000 per kg and under $50,000 

per kg for the laser system. From Figure 40, one can see that as the power requirement 

and SPS cost per unit mass increase, the microwave system is the less expensive option. 

This is driven by the microwave receiver cost being a relatively smaller percentage of the 

total cost and due to the higher microwave end-to-end efficiency. 

 



 75

Table 17. Microwave System Cost Sensitivity to a Change in Power 
Requirement and SPS Cost per Unit Mass ($M) 

 

 
 

Table 18. Laser System Cost Sensitivity to a Change in Power Requirement 
and SPS Cost per Unit Mass ($M) 

 

 
 

3425 100 150 200 250 300 350 400 450 500 550

50,000$         2513 2969 3425 3881 4337 4793 5249 5704 6160 6616

60,000$         2696 3243 3790 4337 4884 5431 5978 6525 7072 7619

70,000$         2878 3516 4155 4793 5431 6069 6707 7346 7984 8622

80,000$         3060 3790 4519 5249 5978 6707 7437 8166 8896 9625

90,000$         3243 4063 4884 5704 6525 7346 8166 8987 9807 10628

100,000$      3425 4337 5249 6160 7072 7984 8896 9807 10719 11631

110,000$      3607 4610 5613 6616 7619 8622 9625 10628 11631 12634

120,000$      3790 4884 5978 7072 8166 9260 10354 11448 12543 13637

130,000$      3972 5157 6343 7528 8713 9898 11084 12269 13454 14640

140,000$      4155 5431 6707 7984 9260 10537 11813 13090 14366 15642

Microwave System Cost Sensitivity to a change in Power Requirement and SPS Cost per Unit Mass ($M)

Lunar Power Requirement (kW)

SPS Cost per 

Unit Mass 

($/kg)

Legend Range

Green Less Than $5B

Yellow Greater Than $5B but Less Than $8B

Red Greater Than $8B

3078 100 150 200 250 300 350 400 450 500 550

50,000$     1870 2489 3108 3727 4346 4964 5583 6202 6821 7440

60,000$     2111 2851 3591 4330 5070 5810 6550 7289 8029 8769

70,000$     2353 3213 4074 4934 5795 6655 7516 8376 9237 10097

80,000$     2594 3576 4557 5538 6519 7501 8482 9463 10444 11426

90,000$     2836 3938 5040 6142 7244 8346 9448 10550 11652 12754

100,000$   3078 4300 5523 6746 7969 9191 10414 11637 12860 14083

110,000$   3319 4663 6006 7350 8693 10037 11380 12724 14068 15411

120,000$   3561 5025 6489 7954 9418 10882 12347 13811 15275 16740

130,000$   3802 5387 6972 8558 10143 11728 13313 14898 16483 18068

140,000$   4044 5750 7455 9161 10867 12573 14279 15985 17691 19397

Laser System Cost Sensitivity to a change in Power Requirement and SPS Cost per Unit Mass ($M)

Lunar Power Requirement (kW)

SPS Cost per 

Unit Mass 

($/kg)

Legend Range

Green Less Than $5B

Yellow Greater Than $5B but Less Than $8B

Red Greater Than $8B
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Figure 40. System Cost Sensitivity to a Change in Power Requirement and SPS 
Cost per Unit Mass 

c. Laser SPS Sensitivity 

Given the baseline figures of merit the laser system is the more economically 

feasible solution. From the system cost sensitivity, it is the better solution when the SPS 

power per unit mass increases and when the SPS cost per unit mass remain below 

$140,000 per kg for a 100 kW lunar power requirement. The ultimate conclusion is that 

the Laser SPS system even with a lower end-to-end efficiency is the better architecture. 

The Laser SPS system is the better architecture because the Microwave SPS total system 

cost is driven by the cost of the receiver placed on the Moon and the large microwave 

transmitter is an order of magnitude greater than the largest antenna placed in orbit. The 

microwave receiver size is determined by the apogee distance using the unique frozen 

elliptical orbit that is stable for a 10-year period which results in a receiver that is 

unacceptably large and costly. From this conclusion, a sensitivity analysis was conducted 

on the laser SPS system to determine the impact to the laser satellite mass as the 

parameters for lunar power requirement, SPS power per unit mass, and end-to-end 

efficiency varied.  
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Table 19 shows that the baseline solution for a SPS system with a 0.2 kW/kg 

power per unit mass and a lunar outpost power requirement of 100 kW produces a SPS 

mass of 6.0 metric tons (mT). Research into launch vehicle masses to a trans-lunar 

injection (TLI) orbit resulted in two launch vehicles, the Falcon 9 Heavy, and the SLS 

Block 1, which have a TLI maximum of 13.2 mT and 25 mT, respectively, and a TLI to 

LLO mass of 12.7 mT and 24 mT, respectively when using hall current thrusters. The 

laser satellite mass sensitivity showed that if lunar outpost power requirement is changed 

to 300 kW, this results in mass greater than the Falcon 9 Heavy capacity. The SLS Block 

1 launch vehicle would have to be used if the power requirement increased to 250 kW 

and the SPS power per unit mass remained 0.2 kW/kg. 

Table 19. Single Laser Satellite Mass Sensitivity to a Change in Power 
Requirement and SPS Power per Unit Mass (mT) 

 

 

  
 

Table 20 shows that the baseline solution for a SPS system with a 0.2 kW/kg 

power per unit mass, and end to end efficiency of 10% and a lunar outpost power 

requirement of 100 kW produces a SPS mass of 5.0 metric tons (mT). However, with a 

300 kW lunar outpost power requirement, the baseline SPS system solution exceeds the 

maximum Falcon 9 Heavy TLI to LLO mass of 12.7 mT when using hall current 

6 100 150 200 250 300 350 400 450 500 550

0.1 12.1 18.1 24.2 30.2 36.2 42.3 48.3 54.3 60.4 66.4

0.15 8.1 12.1 16.1 20.1 24.2 28.2 32.2 36.2 40.3 44.3

0.2 6.0 9.1 12.1 15.1 18.1 21.1 24.2 27.2 30.2 33.2

0.25 4.8 7.2 9.7 12.1 14.5 16.9 19.3 21.7 24.2 26.6

0.3 4.0 6.0 8.1 10.1 12.1 14.1 16.1 18.1 20.1 22.1

0.35 3.5 5.2 6.9 8.6 10.4 12.1 13.8 15.5 17.3 19.0

0.4 3.0 4.5 6.0 7.5 9.1 10.6 12.1 13.6 15.1 16.6

0.45 2.7 4.0 5.4 6.7 8.1 9.4 10.7 12.1 13.4 14.8

0.5 2.4 3.6 4.8 6.0 7.2 8.5 9.7 10.9 12.1 13.3

0.55 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0 12.1

Single Satellite Mass Sensitivity to a change in Power Requirement and SPS Power per Unit Mass (mT)

Lunar Power Requirement (kW)

SPS Power 

per Unit Mass 

(kW/kg)

Legend Range

Green Less Than 12.7 mT

Yellow Greater Than 12.7 mT but Less Than 24 mT

Red Greater Than 24 mT
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thrusters. In order to use the Falcon 9 Heavy and produce 300 kW for the outpost, the end 

to end efficiency would have to be improved to 15%. 

Table 20. Single Laser Satellite Mass Sensitivity to a Change in Power 
Requirement and End-to-End Efficiency (mT) 

 

 

  

 

In addition to the Laser SPS mass sensitivity, analysis was conducted using the 

Excel goal/seek function to determine how inefficient the laser SPS concept could be 

while still providing a 100 kW to the lunar outpost and use the Falcon 9 Heavy 

(Appendix C). The inefficiencies of the laser SPS could be from degradation to the 

satellite transmitter or photovoltaic panels or increased system mass from complexities in 

the thermal management system or in the pointing and tracking system. The goal/seek 

function set the SPS mass to 12.7 metric tons which is the available payload mass of the 

Falcon 9 Heavy using hall current thrusters while allowing the SPS power per unit mass 

to  vary. The results of this sensitivity analysis showed that the SPS power per unit mass 

could be as low as 0.095 kW/kg and still use the Falcon 9 Heavy and provide a 100 kW 

to the lunar outpost. The resulting total system cost was $5.7 billion. 

  

6 100 150 200 250 300 350 400 450 500 550

5% 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0

10% 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5

15% 3.3 5.0 6.7 8.3 10.0 11.7 13.3 15.0 16.7 18.3

20% 2.5 3.8 5.0 6.3 7.5 8.8 10.0 11.3 12.5 13.8

25% 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

30% 1.7 2.5 3.3 4.2 5.0 5.8 6.7 7.5 8.3 9.2

35% 1.4 2.1 2.9 3.6 4.3 5.0 5.7 6.4 7.1 7.9

40% 1.3 1.9 2.5 3.1 3.8 4.4 5.0 5.6 6.3 6.9

45% 1.1 1.7 2.2 2.8 3.3 3.9 4.4 5.0 5.6 6.1

50% 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Single Satellite Mass Sensitivity to a change in Power Requirement and End‐to‐End Efficiency (mT)

Lunar Power Requirement (kW)

End‐to‐End 

Efficiency (%)

Legend Range

Green Less Than 12.7 mT

Yellow Greater Than 12.7 mT but Less Than 24 mT

Red Greater Than 24 mT
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V. CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY OF WORK 

This thesis began with the presumption that mankind is back on the journey to 

lunar exploration and will require a continuous source of power to enable that goal. The 

question this thesis tried to answer was this; Is it feasible to provide power to a lunar 

polar outpost using a satellite constellation in lunar orbit? To answer this question, it was 

necessary to conduct a literature review on several aspects of the problem to include the 

types of lunar orbits, the history and state of the technology for microwave and laser 

wireless power transmission, alternative ideas for lunar power generation, and the history 

and development of solar power satellite concepts. After identifying the lunar outpost 

site, power requirement, and constellation parameters, research required that a system 

cost, mass, and power thread calculation was conducted on two wireless power 

transmissions options using either microwave or laser. The end goal of this thesis was to 

setup a cost comparison to determine which wireless power transmission option was 

more feasible. 

B. CONCLUSIONS 

To effectively explore the Moon, astronauts will need a continuous source of 

power from either surface photovoltaics with complementary energy storage, nuclear 

power, or a solar power satellite. The analysis of alternatives showed the surface 

photovoltaics suffered from significant mass issues related to the energy storage system, 

and that the nuclear power option suffered from safety and political issues in the launch 

and landing risk. The photovoltaic solution using peaks of eternal light did reduce the 

mass issues and is a viable alternative to the SPS concept; however, this solution would 

need to be modeled for a feasibility comparison. It was determined from the system 

analysis that the laser SPS concept is feasible. The microwave SPS concept while 

technically feasible had significant challenges balancing the size and mass of the satellite 

transmitter and lunar receiver. The microwave SPS concept is both impractical when 

using the 277 meter transmitter diameter since this size is an order of magnitude greater 
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than the largest antenna put into orbit and economically impractical when using the 22 

meter transmitter diameter as the receiver costs end up at $154 billion. Ultimately, the 

distance between the satellite transmitter and lunar receiver is too far for cost effective 

microwave wireless power transmission using the frozen elliptical orbit. The microwave 

sensitivity analysis when using Excel’s goal/seek function showed that the viable 

spacecraft distance for microwave power transmission against the laser SPS concept is 

617 kilometers. This distance would require dozens of satellites to provide full coverage 

to the lunar outpost. 

The architecture tradespace included the location of the lunar outpost, method of 

power generation, type of lunar orbit, power requirement, constellation size, wireless 

power transmission option, and launch vehicle. For the architecture trade-offs, the South-

Pole Aitkin Basin was chosen over the South Pole given the higher scientific value that 

could be accomplished for minimal increased system cost of one additional satellite. The 

power generation tradeoff was for a solar power satellite given the mass and safety 

constraints of the alternative. However, the solution of using peaks of eternal light is a 

viable alternative and would need to be modeled to completely understand the difference 

between the two solutions. The lunar orbit type tradeoff showed the use of a Halo orbit at 

the L1 LaGrange point was simply too far for microwave power transmission and 

resulted in extremely large satellite transmitter and lunar receiver sizes. The Halo orbit 

for the laser SPS concept resulted in a transmitter diameter of approximately 29 meters 

and should be considered a viable alternative to reduce the constellation size and 

therefore the total system cost. The tradespace for low lunar orbits allows for smaller 

microwave receiver sizes but increases the number of satellites needed to maintain 

coverage. The frozen elliptical orbit offered the greatest utility for lunar outpost coverage. 

The power requirement tradespace was related to the coverage provided by the 

constellation. A smaller constellation size could be used if the energy storage system at 

the lunar outpost provided power during small breaks in coverage. The analysis for the 

mass and cost of an energy storage system complementing a SPS constellation was not 

conducted and therefore the 100% coverage was required for analysis. The constellation 

size was determined using a 100% coverage requirement at the SPA Basin lunar outpost 
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which resulted in a minimal constellation size of four-satellites. The tradespace for the 

wireless power transmission between microwaves and lasers resulted in a higher per 

satellite cost for the laser system relative to the microwave satellite cost but led to a lower 

total system cost due the relatively expensive microwave receiver. Finally, the tradespace 

for the launch vehicle was conducted which was influenced by the mass of the satellite. 

Both wireless power transmission options with the lunar outpost power requirement of 

100 kilowatts resulted in a small enough mass to ride on the Falcon 9 Heavy. The final 

architecture trades and the most feasible SPS solution can be seen in Figure 41. 

Selections are marked with green check marks. 

Using total system cost to compare the feasibility of the SPS concepts resulted in 

a Microwave total system cost of $3,425 million dollars and a Laser total system cost of 

$3,078 million dollars. The Laser SPS concept is more feasible given this result. 
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Figure 41. Selected Architecture Trades 
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C. AREAS FOR FUTURE WORK 

There are several aspects of the SPS system providing power to a lunar orbit that 

need further development. An area of future study would be the analysis of a three-

satellite constellation that uses a lunar gravitational field similar to the Earth’s J2 affect to 

induce a controlled change in the right ascension of the ascending node (RAAN). This 

three-satellite constellation would be designed to have a RAAN drift of 2π radians per 

year. This would make the orbital plane rotate at the same speed as the Moon and achieve 

a fixed plane in the Sun-Earth-Moon system (Torres-Soto 2008). The goal would be to 

provide continuous coverage at the SPA Basin lunar outpost with a reduced constellation 

size of one less satellite. This analysis was not completed given the scope of the thesis 

and the limits of the moon gravitational model in STK. 

Another area of future work includes the lunar dust environment. Recently, a dust 

cloud was discovered that is unevenly distributed around the Moon. The discovery was 

made from NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) which 

orbited the Moon for six months and documented over 140,000 dust impacts (Nicholes 

2015). A lunar dust model would need to be created to understand the dust’s impact on an 

optical system. The lunar dust could have an impact on the Laser SPS concept by 

introducing laser attenuation which will reduce the end-to-end efficiency and drive 

satellite mass and cost. 

The most important area of future work is the increased fidelity to the SPS figures 

of merit. There was a significant amount of difficulty finding relevant figures of merit to 

model an entire SPS satellite. During research, a useful tool was discovered that was used 

on the Fresh Look Study, SERT study, and SPS-ALPHA study. That tool is called the 

Space Segment Model and the Integrated Architecture Assessment Model. These models 

were created for NASA by Science Applications International Corporation (SAIC) and 

the Futron Corporation with significant effort by Dr. Harvey Feingold (Feingold 2002). 

The models are more faithful to the architecture framework identified in the First 

International Assessment of Space Solar Power and provide increased fidelity to SPS 

calculations than the method presented here. These models should be released as open 

source code, and when new technology such as the SLA or VMJ receiver are developed, 



 84

their figures of merit could be included and compared against a baseline solution. 

Additional parametric modeling with more figures of merit is required to increase the 

fidelity of the solution. These additional figures of merit include the mean time between 

failure, satellite lifetime, and degradation to the lunar receiver, satellite transmitter, and 

photovoltaic panels.  

The impact of batteries on the architecture is a necessary area of future work. As 

mentioned in the background and system architecture section the impact of an energy 

storage system was not directly calculated and compared against SPS concepts. For 

example, in the three-satellite constellation providing coverage to a SPA Basin lunar 

outpost, one can see in Figure 30 that it provides substantial coverage of approximately 

90% with limited coverage of only a few days per month. Since the lunar outpost will 

require some amount of an energy storage capacity as a secondary backup to reduce 

mission risk, the three-satellite constellation could be applicable. The calculations for an 

energy storage system needs to be considered to reduce the total SPS system cost. 

Finally, the last area of future work is the optimization of the architecture. The 

original idea for this thesis was to create an optimization problem in which given the 

architecture trades of outpost location, outpost location scientific value, orbit types, 

wireless power transfer options (microwave vs. laser), and launch vehicles, the goal 

would be to maximize the subjective value of scientific research while minimizing the 

cost. The global lunar landing site study identified many locations that provide scientific 

value which could be accessed by different and ideally lower altitude satellites. If cost 

was the driving factor, then an optimization model could identify which landing site 

locations offer the best return on investment. 
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APPENDIX A. MICROWAVE SYSTEM ANALYSIS WITH A 22 
METER TRANSMITTER DIAMETER 

 

Microwave System Analysis

Constraits Value Units

Frequency 94 GHz

Wavelength 0.0032 m

Spacecraft Range 9881 km

Step 1: Calculate the end‐to‐end power efficiency and SPS power requirement

Value Units

Lunar Outpost Power Requirement 100 kW A

RF to DC Conversion Efficiency Figure of Merit 72% % B

Power Required due to RF to DC Conversion Efficiency C=A/B 139 kW C

RF Collection Efficiency Figure of Merit 93% % D

Power Required due to RF Collection Collection Efficiency E=C/D 149 kW E

Amount of Power in the Main Lobe of the Beam Figure of Merit 84% % F

Power Required due to Power in the Main Lobe of the Beam G=E/F 178 kW G

DC to RF Conversion Efficiency Figure of Merit 78% % H

Power Required due to DC to RF Conversion Efficiency I=G/H 228 kW I

Solar to DC Conversion Efficiency Figure of Merit 25% % J

Power Required due to Solar to DC Conversion Efficiency K=I/J 912 kW K

End‐to‐End Power Efficiency L=B*D*F*H*J 11.0% % L

SPS Power Requirement M=K 912 kW M

912 Hid Cell

Step 2: Calculate the mass and cost of the SPS.

Value Units

SPS Power per Unit Mass Figure of Merit 0.2 kW/kg N

SPS Mass O=M/N 4.6 mT O

SPS Cost per Unit Mass Figure of Merit 100,000 $/kg P

SPS Satellite Cost Q=O*P 456 $M Q

Step 3: Calculate the optimum size of the microwave receiver Value Units

Conversion Density 1 Watt/cm
2

R

1 m
2

10,000 cm
2

S

E in Watts 149343 Watts T

U=T/(R*S) 15 m
2

U

Step 3 Result: The optimum microwave receiver area is 15 m
2

Step 1 Results: The end‐to‐end efficiency for the microwave power thread is 11% which results in a SPS power 

requirement of 912 kilowatts to deliver 100 kilowatts to the lunar outpost.
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Step 4: Calculate the size of the SPS transmitter given the optimum size of the microwave receiver

Value Units

Receiver Diameter V=SQRT(U*4/π) 4.4 m V

Spacecraft Apogee 9881 km W

Frequency 94 GHz X

Speed of Light 3.00E+08 m/s Y

Wavelength Z=Y/X 0.0032 m Z

Using Main Lobe Diffraction Equation Transmitter Diameter 2.44=(V*AA)/(Z*W) 17646 m AA

Step 4.1: Using the largest antenna of 22 meters launched on the SkyTerra‐1 satellite

Value Units

Transmitter Diameter 22 m DD

Using Main Lobe Diffraction Equation Receiver Diamter 2.44=(P*R)/(N*K) 3498 m EE

Step 5: Calculate the mass and cost of the lunar receiver using the 278 meter diameter

Value Units

Receiver Area FF=π*(CC/2)^2 9607553 m
2

FF

Receiver Mass per Unit Area Figure of Merit 0.16 kg/m
2

GG

Receiver Mass HH=FF*GG 1537208 kg HH

Receiver Lunar Cost per Unit Mass Figure of Merit 100,000 $/kg II

Receiver Lunar Cost JJ=HH*II 153721 $M JJ

Step 6: Calculate Trans‐Lunar Orbit (TLI) to Low Lunar Orbit (LLO)

Value Units

Mass Initial Figure of Merit 13200 kg KK

Delta‐V Figure of Merit 800 m/s LL

Specific Impulse Figure of Merit 2100 s MM

Earth Gravitational Constant Constant 9.807 m/s
2

NN

Mass Final OO=KK/e^(LL/MM*NN) 12697 kg OO

Change in Mass PP=KK‐OO 503 kg PP

Step 4 Results: Using the optimum size of the lunar receiver results in an unacceptable large transmitter diamter of 17,646 

meters. The largest antenna launched on the SkyTerra‐1 satellite will be used of 22 meters.

Step 4.2 Results: The 22 meter transmitter diameter results in a lunar receiver diameter of 3500 meters. 

Step 5 Results: Given the balance between the size of the SPS transmitter and lunar receiver, the cost of the receiver is 

$154 billion.

Results: Using the TLI mass of the Falcon 9 Heavy of 13.2 metric tons and solving for Mass final results in an available payload 

mass of 12,697 kg.
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Step 7: Calculate Launch Cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites QQ

Number of Launches RR=QQ 4 Launches RR

Cost per Launch Figure of Merit 158 $M/Launch SS

Launch Cost TT=RR*SS 632 $M TT

Step 8: Calculate the total system cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites UU

Cost per Satellite VV=Q 456 $M VV

Constellation Cost WW=UU*VV 1823 $M WW

System Cost XX=JJ+TT+QQ 156176 $M XX

Step 6 Results: The total launch cost for 4 satellites is $632 million dollars. The Falcon 9 Heavy cost was used and even 

though the mass of the Falcon 9 Heavy is 13,200 kg which could allow the launch vehicle to carry 2 satellites, this thesis 

assumes that the volume of the SPS especially given a 277 meter diameter transmitter, would use all of the Falcon 9 

Heavy's volume.

Step 7 Results: Using the cost of the lunar receiver, the launch cost, and the constellation cost, the total system cost for 

the microwave solar power satellite concept is $156 billion dollars.
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APPENDIX B. MICROWAVE SYSTEM ANALYSIS USING GOAL 
SEEK TO LIMIT SPACECRAFT DISTANCE 

 
 

Microwave System Analysis

Constraits Value Units

Frequency 94 GHz

Wavelength 0.0032 m

Spacecraft Range 617 km

Step 1: Calculate the end‐to‐end power efficiency and SPS power requirement

Value Units

Lunar Outpost Power Requirement 100 kW A

RF to DC Conversion Efficiency Figure of Merit 72% % B

Power Required due to RF to DC Conversion Efficiency C=A/B 139 kW C

RF Collection Efficiency Figure of Merit 93% % D

Power Required due to RF Collection Collection Efficiency E=C/D 149 kW E

Amount of Power in the Main Lobe of the Beam Figure of Merit 84% % F

Power Required due to Power in the Main Lobe of the Beam G=E/F 178 kW G

DC to RF Conversion Efficiency Figure of Merit 78% % H

Power Required due to DC to RF Conversion Efficiency I=G/H 228 kW I

Solar to DC Conversion Efficiency Figure of Merit 25% % J

Power Required due to Solar to DC Conversion Efficiency K=I/J 912 kW K

End‐to‐End Power Efficiency L=B*D*F*H*J 11.0% % L

SPS Power Requirement M=K 912 kW M

912 Hid Cell

Step 2: Calculate the mass and cost of the SPS.

Value Units

SPS Power per Unit Mass Figure of Merit 0.2 kW/kg N

SPS Mass O=M/N 4.6 mT O

SPS Cost per Unit Mass Figure of Merit 100,000 $/kg P

SPS Satellite Cost Q=O*P 456 $M Q

Step 1 Results: The end‐to‐end efficiency for the microwave power thread is 11% which results in a SPS power 

requirement of 912 kilowatts to deliver 100 kilowatts to the lunar outpost.
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Step 3: Calculate the optimum size of the microwave receiver Value Units

Conversion Density 1 Watt/cm
2

R

1 m
2

10,000 cm
2

S

E in Watts 149343 Watts T

U=T/(R*S) 15 m
2

U

Step 3 Result: The optimum microwave receiver area is 15 m
2

Step 4: Calculate the size of the SPS transmitter given the optimum size of the microwave receiver

Value Units

Receiver Diameter V=SQRT(U*4/π) 4.4 m V

Spacecraft Apogee 617 km W

Frequency 94 GHz X

Speed of Light 3.00E+08 m/s Y

Wavelength Z=Y/X 0.0032 m Z

Using Main Lobe Diffraction Equation Transmitter Diameter 2.44=(V*AA)/(Z*W) 1102 m AA

Step 4.1: Using the largest antenna of 22 meters launched on the SkyTerra‐1 satellite

Value Units

Transmitter Diameter 22 m DD

Using Main Lobe Diffraction Equation Receiver Diamter 2.44=(P*R)/(N*K) 219 m EE

Step 5: Calculate the mass and cost of the lunar receiver using the 278 meter diameter

Value Units

Receiver Area FF=π*(CC/2)^2 37500 m
2

FF

Receiver Mass per Unit Area Figure of Merit 0.16 kg/m
2

GG

Receiver Mass HH=FF*GG 6000 kg HH

Receiver Lunar Cost per Unit Mass Figure of Merit 100,000 $/kg II

Receiver Lunar Cost JJ=HH*II 600 $M JJ

Step 4 Results: Using the optimum size of the lunar receiver results in an unacceptable large transmitter diamter of 17,646 

meters. The largest antenna launched on the SkyTerra‐1 satellite will be used of 22 meters.

Step 4.2 Results: The 22 meter transmitter diameter results in a lunar receiver diameter of 3500 meters. 

Step 5 Results: Given the balance between the size of the SPS transmitter and lunar receiver, the cost of the receiver is 

$970 million which is more than the cost for a single SPS satellite
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Step 6: Calculate Trans‐Lunar Orbit (TLI) to Low Lunar Orbit (LLO)

Value Units

Mass Initial Figure of Merit 13200 kg KK

Delta‐V Figure of Merit 800 m/s LL

Specific Impulse Figure of Merit 2100 s MM

Earth Gravitational Constant Constant 9.807 m/s
2

NN

Mass Final OO=KK/e^(LL/MM*NN) 12697 kg OO

Change in Mass PP=KK‐OO 503 kg PP

Step 7: Calculate Launch Cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites QQ

Number of Launches RR=QQ 4 Launches RR

Cost per Launch Figure of Merit 158 $M/Launch SS

Launch Cost TT=RR*SS 632 $M TT

Step 8: Calculate the total system cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites UU

Cost per Satellite VV=Q 456 $M VV

Constellation Cost WW=UU*VV 1823 $M WW

System Cost XX=JJ+TT+QQ 3055 $M XX

Results: Using the TLI mass of the Falcon 9 Heavy of 13.2 metric tons and solving for Mass final results in an available payload 

mass of 12,697 kg.

Step 6 Results: The total launch cost for 4 satellites is $632 million dollars. The Falcon 9 Heavy cost was used and even 

though the mass of the Falcon 9 Heavy is 13,200 kg which could allow the launch vehicle to carry 2 satellites, this thesis 

assumes that the volume of the SPS especially given a 277 meter diameter transmitter, would use all of the Falcon 9 

Heavy's volume.

Step 7 Results: Using the cost of the lunar receiver, the launch cost, and the constellation cost, the total system cost for 

the microwave solar power satellite concept is $156 billion dollars.
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APPENDIX C. LASER SYSTEM ANALYSIS USING GOAL SEEK 

 

 

Laser System Analysis

Constraits Value Units

Wavelength 805 m

Spacecraft Range 9881 km

Step 1: Calculate the end‐to‐end power efficiency and SPS power requirement

Value Units

Lunar Outpost Power Requirement 100 kW A

Laser to DC Conversion Efficiency Figure of Merit 45% % B

Power Required due to Laser to DC Conversion Efficiency C=A/B 222 kW C

Laser Collection Efficiency Figure of Merit 92% % D

Power Required due to Laser Collection Efficiency E=C/D 242 kW E

DC to Laser Conversion Efficiency Figure of Merit 80% % F

Power Required due to DC to Laser Conversion Efficiency G=E/F 302 kW G

Solar to DC Conversion Efficiency Figure of Merit 25% % H

Power Required due to Solar to DC Conversion Efficiency I=G/H 1208 kW I

End‐to‐End Power Efficiency J=B*D*F*H 8.3% % J

SPS Power Requirement K=I 1208 kW K

1208 Hide Cell

Step 2: Calculate the mass and cost of the SPS.

Value Units

SPS Power per Unit Mass Figure of Merit 0.0951 kW/kg L

SPS Mass M=K/L 12.697 mT M

SPS Cost per Unit Mass Figure of Merit 100,000 $/kg N

SPS Satellite Cost O=M*N 1270 $M O

Step 3: Calculate the size of the laser receiver Value Units

Conversion Density 0.069 Watt/cm
2

P

1 m
2

10,000 cm
2

Q

E in Watts 241546 Watts R

S=R/(P*Q) 350 m
2

S

Step 3 Result: The laser receiver is 350 m
2

Step 4: Calculate the size of the SPS transmitter radius given the size of the laser receiver

Value Units

Beam Waist Radius 1.0 m V

Wavelength 805 nm W

Spacecraft Apogee 9881 km X

Transmitter Radius Y=V*SQRT(1+(W*X/(PI()*V^2))^2) 2.72 m Y

Transmitter Area Z=PI()*r^2 23 m
2

Z

Step 1 Results: The end‐to‐end efficiency for the laser power thread is 8.3% which results in a SPS power requirement of 

1208 kilowatts to deliver 100 kilowatts to the lunar outpost.

Step 4 Results: Given the laser receiver area and the radius of the laser beam waist, the transmitter radius is 2.72 meters 

with a total area of 23 m
2
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Step 5: Calculate the mass and cost of the lunar receiver

Value Units

Receiver Area AA=S 350 m
2

AA

Receiver Mass per Unit Area Figure of Merit 0.86 kg/m
2

BB

Receiver Mass CC=AA*BB 301 kg CC

Receiver Lunar Cost per Unit Mass Figure of Merit 100,000 $/kg DD

Receiver Lunar Cost EE=CC*DD 30 $M EE

Step 6: Calculate Trans‐Lunar Orbit (TLI) to Low Lunar Orbit (LLO)

Value Units

Mass Initial Figure of Merit 13200 kg FF

Delta‐V Figure of Merit 800 m/s GG

Specific Impulse Figure of Merit 2100 s HH

Earth Gravitational Constant Constant 9.807 m/s
2

II

Mass Final JJ=FF/e^(GG/HH*II) 12697 kg JJ

Change in Mass KK=FF‐JJ 503 kg KK

Step 7: Calculate Launch Cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites LL

Number of Launches LL=MM 4 Launches MM

Cost per Launch Figure of Merit 158 $M/Launch NN

Launch Cost OO=MM*NN 632 $M OO

Step 8: Calculate the total system cost

Value Units

Number of Satellites Orbital Analysis 4 Satellites PP

Cost per Satellite QQ=O 1270 $M QQ

Constellation Cost RR=PP*QQ 5079 $M RR

System Cost SS=EE+OO+RR 5741 $M SS

Step 5 Results: Both the lunar receive and transmitter diameters are reasonable which leads to a receiver cost of $30 million 

dollars

Step 6 Results: Using the TLI mass of the Falcon 9 Heavy of 13.2 metric tons and solving for Mass final results in an available 

payload mass of 12,697 kg.

Step 7 Results: The total launch for 4 satellites is $632 million dollars. The Falcon 9 Heavy cost was used and even though 

the mass of the Falcon 9 Heavy is 13,200 kg which could allow the launch vehicle to carry 2 satellites, this thesis assumes 

that the volume of the SPS would use all of the Falcon 9 Heavy's volume.

Step 8 Results: Using the cost of the lunar receiver, the launch cost, and the constellation cost, the total system cost for 

the laser solar power satellite concept is $5.2 billion dollars.
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