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We extend the dynamical systems analysis of Scalar-Fluid interacting dark energy models per-
formed in C. G. Boehmer et al Phys. Rev. D 91, 123002 (2015), by considering scalar field potentials
beyond the exponential type. The properties and stability of critical points are examined using a
combination of linear analysis, computational methods and advanced mathematical techniques, such
as centre manifold theory. We show that the interesting results obtained with an exponential po-
tential can generally be recovered also for more complicated scalar field potentials. In particular,
employing power-law and hyperbolic potentials as examples, we find late time accelerated attractors,
transitions from dark matter to dark energy domination with specific distinguishing features, and
accelerated scaling solutions capable of solving the cosmic coincidence problem.

I. INTRODUCTION

As by now confirmed by precise cosmological observations [1–5], our Universe is presently undergoing through
a period of accelerated expansion. In the standard cosmological picture, this phenomenon can be explained by an
exotic repulsive cosmic fluid known as dark energy (DE), whose fundamental nature is still unclear. The easiest
theoretical model for DE, which well fits the present cosmological observations [3–5], is the so called ΛCDM
model, resulting by a simple addition of a positive cosmological constant Λ to the Einstein field equations. This
model accounts for both DE, through Λ, and dark matter (DM), the other invisible component needed to match
the astronomical data, through a pressure-less fluid which does not interact with electromagnetic radiation.
Unfortunately, although well in agreement with observations, ΛCDM is plagued by unsolved theoretical issues,
such as the cosmological constant problem [6, 7] and the cosmic coincidence problem [8].

In order to alleviate these problems, a dynamical scalar field, which is capable to reproduce the properties of a
cosmological constant at late times, has been proposed as an alternative explanation to the present cosmological
acceleration (see [9, 10] for reviews). Models based on scalar field theories are enough complex to produce a non
trivial cosmological dynamics and nonetheless sufficiently simple to handle. They are collectively known under
the name quintessence and can be well motivated by the lower energy limit of some well known high energy
theories like string theory. Moreover in a cosmological context, apart from describing DE, scalar fields are also
used to describe inflation [11], DM [12] and also unified dark sector models [13].

Once one assumes DE to be a dynamical entity, in contrast with the time-independent cosmological constant,
nothing prevents a possible interaction between the two dark sector components, namely between DE and DM.
One of the advantages of considering a dark sector coupling is the existence of late time accelerated scaling
attractors, which normally cannot be obtained without an interaction, and can in principle represent a possible
solution to the cosmic coincidence problem [14–17]. Unfortunately, given the absence of a fundamental satisfying
description of both DM and DE, no one knows how to theoretically implement such a coupling, and all the
models proposed so far rely on some simple phenomenological approaches (see [18] for a recent review), which
in general might give rise to complications at the cosmological perturbation level [19, 20].

Recently, a new phenomenological approach for interacting DE theories, which uses a well posed variational
method and thus is completely well defined also at the fully covariant level, has been introduced in [21, 22] (see
[23, 24] for similar ideas). In this theory, DM is characterized by a perfect fluid and integrated into a variational
principle using Brown’s Lagrangian formulation of relativistic fluids [25]. The general class of theories defined
in this way has been called Scalar-Fluid theories [26, 27], and besides interacting DE it has also been applied to
build models of screened scalar fields [28, 29]. Unlike previous interacting DE proposals, e.g. [18, 30–32], in this
approach the interaction is introduced directly in a suitably defined action, whereby the conservation equation
is automatically satisfied. Therefore, this type of coupling has the advantage over the usual phenomenological
interactions of being consistently constructed at the Lagrangian level and thus of being well motivated by an
underlining theoretical framework, even though not a fundamental one.
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In this paper, we extend the cosmological dynamical systems analysis of Scalar-Fluid interacting DE models
performed in [21]. Dynamical system techniques are a useful tool to study the asymptotic behaviour and to
determine the complete dynamics of a cosmological model. For an introduction to the applications of dynamical
system in cosmology we refer the reader to [33, 34] (see also [35, 36]). These techniques have been largely
applied to several cosmological models. For some recent studies we refer the reader to the following works:
quintessence field [37–40], k-essence [41, 42], Brans-Dicke theory [43–45], f(R) gravity [46], hybrid metric-
Palatini gravity [47, 48], f(T ) theory [49], chameleon theories [29, 50], holographic DE [51], braneworld theories
[52, 53], interacting DE [32, 54, 55].

In [21], the scalar field potential is taken to be of the exponential kind, leading to three dimensional dynamical
systems whose dynamical evolution is rather simple to analyse. The aim of this paper is to investigate the
cosmological dynamics of the same Scalar-Fluid interacting quintessence models considered in [21] for a class
of scalar fields whose self interacting potential V (φ) is left arbitrary. In order to accomplish our scopes, we

will introduce a parameter Γ

(
= V d2V

dφ2

(
dV
dφ

)−2
)

and assume that it can be written as a function of another

parameter s
(

= − 1
V
dV
dφ

)
. In this case, the dynamical systems become four dimensional and consequently the

analysis is slightly more complicated if compared to the case of exponential potential. In order to investigate the
cosmological dynamics for the general scalar field potential, we use the method introduced in [56]. We shall see
that there are some critical points which exist for a general potential but which do not exist in the exponential
potential case. This type of generalization has been done earlier in the context of braneworld theories [32, 57–
59], tachyon field [60–62], quintom field [63], k-essence [42] and loop quantum gravity [64]. Moreover, for this
type of analysis beyond the exponential potential, non-hyperbolic points (critical points whose stability matrix
contains a vanishing eigenvalue) are usually obtained. For this type of points, linear stability theory fails
and other complicated mathematical tools, such as Lyapunov function or center manifold theory [56, 65–68],
or numerical methods, like perturbation analyses near the critical point [32, 42, 69], need to be employed in
order to find the asymptotic behaviour. Moreover, in order to better understand the cosmological dynamics
of this particular models (especially regarding non-hyperbolic critical points), in what follows we also consider
two concrete potentials as an example: the hyperbolic potential V = V0 sinh−η(λφ) and the inverse powerlaw

potential V = M4+n

φn .

The organization of the paper is the following. In Sec. II, we briefly review the theoretical framework of
Scalar-Fluid theories following [21]. In Sec. III, we present the basic cosmological equations of the model
and the formation of an autonomous system of differential equations. In Secs. IV and V, we consider two
models corresponding to two distinct algebraic couplings and investigate their dynamics using dynamical systems
technique. For the first interacting model given in Sec. IV, we present two subsections where we focus on two
distinct values for one of the parameters. In both subsections, we consider the two specific potentials mentioned
above as examples in order to understand in details the cosmological dynamics in these situations.

Notation: In this work, we consider the (−,+,+,+) signature convention for the metric tensor. We also
consider units where 8πG = c = } = 1. The comma notation denotes partial derivatives (i.e. φ,µ = ∂µφ).

II. SCALAR FLUID THEORIES: ACTION AND FIELD EQUATIONS

In this section we briefly present the action and field equations of Scalar-Fluid theories without entering in
further theoretical details. The reader interested in more information and applications of Scalar-Fluid theories
can refer to [21, 22, 26–29].

The total action of Scalar-Fluid theories is given by

S =

∫
d4x [Lgrav + Lmat + Lφ + Lint] , (1)

where Lgrav denotes the gravitational Lagrangian, Lmat denotes the matter Lagrangian, Lφ denotes the scalar
field Lagrangian and Lint denotes the interacting Lagrangian. The gravitational sector Lgrav is given by the
usual Einstein-Hilbert Lagrangian

Lgrav =
1

2

√
−gR, (2)

where g is the determinant of the metric gµν and R is the Ricci scalar. The matter Lagrangian Lmat for
relativistic fluid described in [25] is given by

Lmat = −
√
−gρ(n, s) + Jµ

(
ϕ,µ + s θ,µ + βAα

A
,µ

)
, (3)

where ρ(n, s) is the energy density of the fluid, assuming that it depends on the particle number density n and
the entropy density per particle s. Here θ, ϕ and βA are Lagrange multipliers with A = 1, 2, 3 and αA are the
Lagrangian coordinates of the fluid. The vector density particle number Jµ is related to n as

Jµ =
√
−g nuµ, |J | =

√
−gµνJµJν , n =

|J |√
−g

, (4)
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where uµ is the fluid 4-velocity satisfying uµu
µ = −1. The scalar field Lagrangian Lφ is taken in its canonical

form

Lφ = −
√
−g
[

1

2
∂µφ∂

µφ+ V (φ)

]
, (5)

where V denotes an arbitrary potential for the scalar field φ. Finally, we have to determine the interacting
Lagrangian Lint. In this work, we consider an algebraic coupling between the fluid and the scalar field of the
type

Lint = −
√
−gf(n, s, φ), (6)

where f(n, s, φ) is an arbitrary function. This type of coupling has been studied in [21, 29] and can lead to late
time accelerated scaling solutions similar to the ones obtained in standard interacting models constructed in
the past [14–17].

Variation of (1) with respect to gµν yields the following Einstein field equations

Gµν = Tµν + T (φ)
µν + T (int)

µν , (7)

where

Tµν = pgµν + (ρ+ p)uµuν , (8)

T (φ)
µν = ∂µφ∂νφ− gµν

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (9)

T int
µν = pintgµν + (ρint + pint)uµuν , (10)

are the fluid energy momentum tensor, the scalar field energy momentum tensor and the interacting energy
momentum tensor, respectively. In the above, the fluid pressure is defined as

p = n
∂ρ

∂n
− ρ. (11)

whereas ρint and pint are the interacting energy density and pressure respectively defined as

ρint = f(n, s, φ), pint = n
∂f(n, s, φ)

∂n
− f(n, s, φ). (12)

Varying the action (1) with respect to the scalar field yields the modified Klein-Gordon equation

�φ− ∂V

∂φ
− ∂f

∂φ
= 0, (13)

where � = ∇µ∇µ and ∇µ is the covariant derivative with respect to the metric gµν .

III. BASIC COSMOLOGICAL EQUATIONS

In this section, we will consider the cosmological evolution of the Universe based on the interacting model
considered in Sec. II. As favoured by astronomical observations, we shall consider a spatially flat, homogeneous
and isotropic Friedmann-Robertson-Walker (FRW) universe [4, 5, 70], described by the metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (14)

where a(t) is the scale factor, t is the coordinate time and x, y, z are Cartesian coordinates.
Applying this metric to the Einstein field equations (7) and the Klein-Gordon equation (13) yields

3H2 =

(
ρ+

1

2
φ̇2 + V + f

)
, (15)

2Ḣ + 3H2 = −
(
p+

1

2
φ̇2 − V + pint

)
, (16)
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and

φ̈+ 3Hφ̇+
∂V

∂φ
+
∂f

∂φ
= 0, (17)

respectively, where H = ȧ
a is the Hubble parameter. It can be shown that at the background level the interaction

does not modify the equation of motion of matter [21]

ρ̇+ 3H(ρ+ p) = 0, (18)

where ρ and p denote the energy density and pressure of the fluid with a linear equation of state (EoS) w defined
by p = wρ (−1 ≤ w ≤ 1).
The effective EoS weff is defined as

weff =
peff

ρeff
=
p+ 1

2 φ̇
2 − V + pint

ρ+ 1
2 φ̇

2 + V + f
. (19)

The Universe undergoes accelerated expansion if the condition weff < − 1
3 is satisfied.

As in [21], in order to convert the cosmological equations (15)-(17) into an autonomous system of equations,
we introduce the following dimensionless variables

σ =

√
ρ

√
3H

, x =
φ̇√
6H

, y =

√
V√

3H
, z =

f

3H2
, s = − 1

V

dV

dφ
. (20)

Here the variable s accounts for the arbitrariness of the self-interacting potentials [8, 56, 67, 71–75]. Using the
dimensionless variables (20), the Friedmann equation (15) becomes

1 = σ2 + x2 + y2 + z. (21)

This serves as a constraint equation for the phase space, effectively reducing its dimension by one. Using
the above dimensionless variables (20), the cosmological equations (15)-(17) can be recast into the following
autonomous system of equations

x′ = −1

2

(
3x
(
(w + 1)y2 + wz − w + 1

)
+ 3(w − 1)x3 −

√
6sy2

)
+ xA−B, (22)

y′ = −1

2
y
(

3(w − 1)x2 + 3
(
(w + 1)y2 + wz − w − 1

)
+
√

6sx
)

+ yA, (23)

z′ = 2A(z − 1) + 2Bx− 3z
(
(w − 1)x2 + (w + 1)y2 + w(z − 1)

)
, (24)

s′ = −
√

6x g(s). (25)

where g(s) = s2(Γ(s)− 1) and

Γ = V
d2V

dφ2

(
dV

dφ

)−2

. (26)

In Eqs. (22)-(25), we have defined

A =
pint

2H2
and B =

1√
6H2

∂ρint

∂φ
. (27)

Different types of potentials lead to different forms of Γ, which we assume to be a function of s. Note that the
following analysis is applicable only to potentials where Γ can be written as a function of s. If this is not the
case then more complicated dynamical systems analysis are needed, usually requiring the addition of further
dimensionless variables; see e.g. [64, 76–79]. In general if Γ is a function of s then scaling solutions naturally
appear in the phase space [79], the simplest case being Γ = 1 which corresponds to the case of exponential
potential. In Eqs. (22)-(25) and throughout, a prime denotes differentiation with respect to the number of
e-folds N defined as dN = Hdt. It can be seen from Eq. (25) that s′ = 0 only when either x = 0 or s = 0 or
Γ(s) = 1. We also notice that for x 6= 0 it is possible to obtain s′ 6= 0 and g(s) 6= 0 even when s = 0, since a
particular potential could render the combination g(s) = s2(Γ(s)− 1) different from zero. Hence, the necessary
condition that s′ = 0 when x 6= 0 is g(s) = 0.

In order to close the system, we must specify the function ρint from which the quantities A and B can be
obtained. Specific choices of ρint let the quantities A and B to depend on x, y, z only and the resulting system
is thus closed without the addition of further dynamical variables. On the other hand if A and B do not depend
solely on x, y, z then additional extra variables are required, increasing in this manner the dimension of the
system. In what follows, we consider the two choices of ρint given in Table I, as already studied in [21] for
the case of the exponential potential. For such choices of ρint, it can be seen that A and B depend only on
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ρint pint A B

Model I γ ρα exp(−βφ) [α(w + 1)− 1]ρint
3
2
[α(w + 1)− 1]z −β

√
3
2
z

Model II γφρ wρint
3
2
wz γ

√
3
2

(
1− x2 − y2 − z

)
TABLE I: Explicit forms of A and B for given ρint. Here α, β and γ are dimensionless parameters.

x, y, z; see Table I. From the mathematical point of view, they are simple to analyse and from a physical
point of view they are sufficiently complicated to lead to a new and rich cosmological dynamics. Moreover,
as shown in [28], Model I nicely generalizes the well known chameleon coupling used to screen scalar fields at
Solar System scales, while Model II represents the simplest linear coupling between φ and ρ one can think of.
As mentioned before different choices from the ones in Table I in general require the introduction of further
dimensionless variables: for example simply taking ρint = γφρ2 would yield A = γρ2/(

√
6H2) = 3

√
3/2 γσ4H2,

which cannot be rewritten in terms of the variables (20), but it can be analysed introducing the (compact)
variable u = H0/(H +H0); c.f. [31, 47].

Finally we note that from the physical condition ρ ≥ 0, one has σ2 ≥ 0, so from Eq. (21) one obtains the
constraint equation

x2 + y2 + z ≤ 1. (28)

Thus, the four dimensional phase space of the system (22)-(25) is given by

Ψ =
{

(x, y, z) ∈ R3 : 0 ≤ x2 + y2 + z ≤ 1
}
× {s ∈ R} . (29)

IV. MODEL I

This section deals with the phase space analysis of the dynamical system (22)-(25) for the Model I, as given
in Table I. In terms of dimensionless variables (20), an effective EoS parameter weff is given by

weff =
peff

ρeff
= w − (w − 1)x2 − (1 + w)y2 + (1 + w)(α− 1)z. (30)

We note that the system (22)-(25) is invariant with respect to the transformation y → −y. So we will restrict the
analysis only with positive values of y. In general, there are up to nine critical points of the system, depending
on the values of parameters α, β, w and s∗ as given in Table II. The corresponding eigenvalues of all critical
points are given in Table III. In all cases, s∗ represents a solution of the equation g(s) = 0 and dg(s∗) is the
derivative of g(s) evaluated at s = s∗.

Critical point O does not depend on the potential for its existence and its stability (s is arbitrary). Critical
points A1±, A2, A3, A4, A5 and A6 depend on the particular potential under consideration and there is a
copy of each of these point for each solution of g(s) = 0, i.e. for each s∗. On the other hand, critical point
A7 corresponds to the case where the potential is constant, as the φ-derivative of the potential vanishes. It
however depends on the concrete form of the potential for its stability. Moreover, it can be seen that point A7

is a special case of point A3 when s∗ = 0.

Here: Ξ = −2β2+3(α(w+1)−1)(α(w+1)−2)
3(α(w+1)−2)

Point x y z s Existence weff

O 0 0 0 s Always w

A1± ±1 0 0 s∗ Always 1

A2

√
3
2

(1+w)
s∗

√
3
2

√
(1+w)(1−w)

s∗
0 s∗ s2

∗ ≥ 3(1 + w) w

A3
s∗√

6

√
1− s2∗

6
0 s∗ s2

∗ ≤ 6
s2∗−3

3

A4 −
√

2
3

β
α(w+1)−2

0 1− 2β2

3(α+αw−2)2
s∗ Always Ξ

A5

√
3
2

(1+w)(1−α)
β

0 3
2

(1−α)(1+w)(1−w)

β2 s∗ 0 ≤ 3(α−1)(w+1)(α(w+1)−2)

2β2 ≤ 1 w

A6

√
3
2

(1+w)α
s∗−β

√
6(w+1)α−3(w+1)2α2+2β(β−s∗)

√
2|s∗−β|

s∗(s∗−β)−3(1+w)α

(β−s∗)2
s∗ 0 ≤ 2β(β − s∗) −1− αs∗(w+1)

β−s∗

−3α(w + 1)(α(w + 1)− 2)

A7 0 1 0 0 Always −1

TABLE II: Critical points of Model I.
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Here we have defined: ∆∗± = − 3
4
(1− w)

[
1±

√
24(1+w)

s2∗
− (7+9w)

(1−w)

]
Θ± = 3

4

[
(w − 1)± 1

β

(
(w − 1)12α3w3 + 36α3w2 − 24α2w3 + 36α3w − 96α2w2 − 8αβ2w + 12αw3

+12α3 − 120α2w − 8αβ2 + 84αw2 + 9wβ2 − 48α2 + 132αw + 7β2 − 24w2 + 60α− 48w − 24
)1/2]

Λ∗± = 1
4(β−s∗)

[
−3α s∗ (w + 1)− 6 (β − s∗)±

{
−216α3w3 − 72α2β s∗ w

2 + 81α2s∗
2w2 − 648α3w2 − 144α2β s∗ w

+162α2s∗
2w − 648α3w − 72α2β s∗ + 81α2s∗

2 + 432α2w2 + 144αβ2w + 36αβ s∗ w − 180α s∗
2w + 48β3s∗

−96β2s∗
2 + 48β s∗

3 − 216α3 + 864α2w + 144αβ2 + 36αβ s∗ − 180α s∗
2 + 432α2 + 36β2 − 72β s∗ + 36 s∗

2
}1/2

]
Point E1 E2 E3 E4 Stability

O 0 3
2
(w − 1) 3

2
(w + 1) 3(w + 1)(1− α) Saddle

A1± 3(1− w) 3∓
√

6
2
s∗

√
6(
√

6∓ β)− 3α(w + 1) ∓
√

6 dg(s∗) Unstable node/Saddle

A2 − 3(β+s∗(α−1))(w+1)
s∗

∆∗+ ∆∗− − 3(w+1) dg(s∗)
s∗

Figs. 1, 4.

A3
s2∗
2
− 3 s2

∗ − 3(w + 1) s∗(s∗ − β)− 3α(w + 1) −s∗dg(s∗) Stable node/Saddle

Unstable node/Saddle

A4
−2β2+3(α(w+1)−2)2

α(w+1)−2
−2β2+3(w+1)(α−1)(α(w+1)−2)

α(w+1)−2
1
2

2β(s∗−β)+3α(w+1)(α(w+1)−2)
α(w+1)−2

2β dg(s∗)
α(w+1)−2

(α = 1)

See Fig. 4 for α = 3

A5
3
2

(w+1)(α s∗+β−s∗)
β

Θ+ Θ−
3(α−1)(w+1)dg(s∗)

β
Saddle (for w = 0)

A6
−3(β+(α−1)s∗)(w+1)

(β−s∗)
Λ∗+ Λ∗−

3α(w+1)dg(s∗)
β−s∗ Figs. 1, 4.

Stable if g(0) > 0, α > 0

A7 −3(w + 1) −3α(w + 1) 1
2

(
−
√

12g(0) + 9− 3
)

1
2

(√
12g(0) + 9− 3

)
Saddle if g(0) < 0

or α < 0.

See App. if g(0) = 0

TABLE III: Stability of critical points of Model I.

Due to the complexity of model I, we will consider only two distinct values of α: namely α = 1 or 3. For these
two choices of α, we can see how these interacting models can well describe the observed late time dynamics of
the Universe.

A. The case α = 1

We will now investigate the phase space analysis for the choice α = 1. For this particular choice of α, critical
point A5 coincides with the origin O. So the total number of critical points reduces to eight. Critical points O,
A1±, A4 exist for any values of parameters β, w, s∗. Critical point A2 exists for s2

∗ ≥ 3(w + 1), critical point
A3 exists for s2

∗ ≤ 6 and point A6 exists whenever 3(1− w2) ≥ 2β(s∗ − β).
Critical point O corresponds to an unaccelerated matter dominated universe (weff = w). It is non-hyperbolic

in nature due to the vanishing of at least one of its eigenvalues, however it behaves as a saddle as two of its
corresponding non-vanishing eigenvalues are opposite in sign. Points A1± correspond to an unaccelerated, scalar
field kinetic energy dominated solution with stiff fluid effective EoS (weff = 1). Point A1+ is an unstable node

whenever β <
√

6
2 (1 − w), s∗ <

√
6 and dg(s∗) < 0, otherwise it is a saddle, whereas point A1− is an unstable

node whenever β > −
√

6
2 (1−w), s∗ > −

√
6 and dg(s∗) > 0, otherwise it is a saddle. Point A2 corresponds to a

scaling solution with weff = w where the energy densities of DM and DE are both non zero. This means that
the Universe behaves as if it is dominated by matter completely, even though both DE and DM contribute to

the total energy. It is a stable node when 0 < 24(1+w)
s2∗

− (7+9w)
(1−w) < 1, β

s∗
> 0 and s∗ dg(s∗) > 0, it is a stable

spiral when 24(1+w)
s2∗

− (7+9w)
(1−w) < 0, β

s∗
> 0 and s∗ dg(s∗) > 0, otherwise it is a saddle. Point A3 corresponds to a

scalar field dominated universe. It represents an accelerated universe whenever s2
∗ < 2. It is a stable node when

s2
∗ < 3(w+1), s∗β < s2

∗−3(w+1) and s∗dg(s∗) > 0, otherwise it is a saddle. Point A4 corresponds to a solution
where the matter energy density vanishes but the kinetic part of the scalar field and the interacting energy
density are non-zero. It is not stable as its eigenvalue E2 > 0 (it is an unstable node when 2β2 > 3(1 − w),
2β s∗ < 3(1 − w) + 2β2 and β dg(s∗) < 0, otherwise it is a saddle). It corresponds to an accelerated universe
when 2β2 < (3w − 1)(1−w). Due to the complexity of critical point A6, we will analyse its stability only on a
physically interesting case, i.e. for w = 0. It corresponds to an accelerated universe when s∗

β > −2 and it stands

for a solution where the matter energy density vanishes but the scalar field and interacting energy density are
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FIG. 1: Regions of stability of critical points A2, A3 and A6 in the (β, s∗) parameter space. Region I+ corresponds to
the region of stability of point A3 when dg(s∗) > 0, whereas region I− corresponds to the region of stability of point A3

when dg(s∗) < 0. Region II+ and II− corresponds to the region of stability of point A6 when dg(s∗) > 0 and dg(s∗) < 0
respectively. Region III+ corresponds to the regions of stability of point A2 when dg(s∗) > 0 whereas region III− for
dg(s∗) < 0. Here we have taken w = 0 and α = 1.

both non-zero (see [24] for a discussion regarding this kind of solutions). It is either stable or a saddle node
depending on the values of s∗ and β.

The stability analysis for points A2, A3 and A6 is confirmed numerically as shown in Fig. 1 by considering
s∗ as a parameter without specifying the concrete form of the scalar field potential and by focusing on the
most physically interesting case (w = 0). Critical point A7 corresponds to an accelerated scalar field dominated
solution (weff = −1). It is stable whenever g(0) > 0 and a saddle whenever g(0) < 0. However, it is a non-
hyperbolic point if g(0) = 0, in which case linear stability theory fails to determine its stability and other more
complicated mathematical tools, like center manifold theory, are required [56, 67, 68]. The full analysis of the
stability of this point using center manifold theory is given in the appendix A. From that analysis, point A7

corresponds to a late time scalar field dominated attractor if Γ(0) > 1 (c.f. Eq. (26)).
From the above stability analysis, we can see that whenever β and s∗ are of the same sign (see Fig. 1), the late

time behaviour of the universe is undistinguishable from the case of a canonical scalar field without interaction
[56]. In this scenario, the late time universe will correspond to a scalar field dominated point A3 (or A7) or a
scaling solution A2. However, whenever β and s∗ have opposite sign (see Fig. 1), then a new late time behaviour
arises. In this case the late universe will either correspond to a scalar field dominated solution A3 (or A7) or
to an accelerated solution A6 where the scalar field energy density and the interacting energy density do not
vanish, but the matter energy density does vanish. This solution can thus alleviate the coincidence problem
as it corresponds to an accelerated late time attractor where the DE density does not dominate completely.
This is similar to what one can achieve by introducing interacting terms at the level of the field equations
[14–17]. Note also that points A2, A3 and A6 cannot be late time attractors simultaneously (see Fig. 1). Hence,
depending on the choice of parameters, the Universe either evolves from a matter dominated solution to a late
time, accelerated, scalar field dominated solution, describing in this way the DM to DE transition, or it reaches
an accelerated scaling solution capable of solving the cosmic coincidence problem.

In order to better understand the dynamics of these cosmological models, it is now interesting to focus the
analysis above on concrete forms of the scalar field potential, especially given the fact that the stability of the
critical points depends strongly on the values of s∗ and dg(s∗). In the following examples we choose two specific
potentials and analyze their dynamics in detail.

Example I: V = V0 sinh−η(λφ)

In this first case, we consider the hyperbolic potential

V = V0 sinh−η(λφ) (31)

where V0 and λ are parameters with suitable dimensions and η is a dimensionless parameter. This potential was
first introduced in [80]. For a canonical scalar field, it has been studied using dynamical systems techniques in
[56, 81], the cosmological dynamics of some alternative cosmological models using this potential has been also
studied in [42, 57]. For this potential, we have

g(s) =
s2

η
− ηλ2 (32)
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FIG. 2: Evolution of the relative energy density of DE (Ωφ), DM (Ωm), interaction (Ωint) together with effective equation
of state (weff) for interacting model I with potential V = V0 sinh−η(λφ). Here we have taken w = 0, α = 1, β = 10,
λ = −2, η = 1.

so that

s∗ = ±ηλ, dg(s∗) =
2s∗
η

(33)

Critical points A1±, A2, A3, A4, A6 will have each exactly two copies for two solutions s∗ = ±ηλ, point O exists
for any arbitrary potential.

As already mentioned above, the properties of the critical point O do not depend on the scalar field potential.

Point A1+ is an unstable node whenever β <
√

6
2 (1 − w), ηλ <

√
6 and λ < 0, otherwise it is a saddle,

whereas point A1− is an unstable node whenever β > −
√

6
2 (1 − w), ηλ > −

√
6 and λ > 0, otherwise it is a

saddle. Point A2 is a stable node when 0 < 24(1+w)
η2λ2 − (7+9w)

(1−w) < 1, β
ηλ > 0 and η > 0, it is a stable spiral

when 24(1+w)
η2λ2 − (7+9w)

(1−w) < 0, β
ηλ > 0 and η > 0, otherwise it is a saddle. Point A3 corresponds to a scalar

field dominated universe. It represents an accelerated universe whenever η2λ2 < 2. It is a stable node when
η2λ2 < 3(w+ 1), ηλβ < η2λ2− 3(w+ 1) and η > 0, otherwise it is a saddle. Point A4 is an unstable node when
2β2 > 3(1−w), 2β ηλ < 3(1−w)+2β2 and β λ < 0, otherwise it is a saddle. As in the general potential case, for
critical point A6 we will consider only the physically interesting value w = 0. For this choice A6 represents an
accelerated universe when ηλ

β > −2. It is either a stable or a saddle node depending on the values of η, λ and β.

This solution can solve the coincidence problem as it corresponds to an accelerated late time attractor where the
DE density does not dominate completely. For example if we numerically choose α = 1, β = 10, λ = −2, η = 1,
we obtain E1 = −2.5, E2 = −1.53− 8.16 i, E3 = −1.53 + 8.16 i, E4 = −0.67, weff = −0.83 and the DE density
parameter denoted by Ωφ = x2 + y2 = 0.85. Finally, critical point A7 corresponds to a late time accelerated
solution whenever η < 0, and it is a saddle otherwise.

Hence, depending on the choices of the model parameters, the universe starts from a stiff matter dominated
solution A1± (weff = 1) and evolves towards either an accelerated scalar field dominated solution A3 (or A7), an
unaccelerated scaling solution A2, or an accelerated scaling solution A6 through a matter dominated solution O.
Thus, this model can well describe the deceleration to acceleration transition corresponding to the domination of
DE over DM at late times. Moreover it can solve the cosmic coincidence problem whenever point A6 is the late
time attractor, regardless of fine tuning issues concerning the amplitude of the scalar field potential V0 which is
allowed to take any positive non-vanishing value. This behaviour is shown by Fig. 2 where the time evolution of
all energy densities involved, together with the effective EoS of the universe, have been plotted choosing initial
conditions leading to a long lasting matter dominated phase, as required by cosmological observations. From
the figure it is clear that the final stage of the universe is an accelerated expansion where the energy densities of
matter and dark energy remain fixed to the same order of magnitude. Furthermore during the transition from
dark matter to dark energy domination the effective EoS of the universe presents some non-linear behaviour, the
“oscillations” in Fig. 2, which distinguish this model from the standard ΛCDM evolution and could in principle
lead to observational signatures to look for in future astronomical observations.

Example II: V = M4+n

φn

In this second example, we consider the potential

V =
M4+n

φn
, (34)
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FIG. 3: Projection of the system (22)-(25) for model I with potential V = M4+n

φn on the x− s plane. In the panel (a) we

take n = 10 where point A7 is stable, in panel (b) we take n = −10 where point A7 is not stable. Here we have taken
w = 0, α = 1, β = −2.

where M is a mass scale and n is a dimensionless parameter. This potential can lead to tracking behaviour [82]
and the cosmological evolution of some cosmological models where this potential appears have recently been
studied using dynamical system technique [32, 42].

In this case, we have simply

g(s) =
s2

n
, (35)

implying that s∗ = 0. This means that critical point A2 does not exist for this potential, and that point A3

reduces to point A7. Looking at the eigenvalues given in Table III for the case s∗ = 0 and dg(s∗) = 0, one can
immediately realise that all the allowed critical points are non-hyperbolic. Point A1+ behaves as an unstable

node whenever β <
√

6
2 (1−w), otherwise it behaves as a saddle, whereas point A1− behaves as an unstable node

whenever β > −
√

6
2 (1 − w), otherwise it behaves as a saddle. Point A4 is not stable as its eigenvalue E2 > 0

(it behaves as unstable node when 2β2 > 3(1 − w), otherwise it behaves as a saddle). Point A6 behaves as a
saddle since the eigenvalue E2 is always positive and E1 is negative. For critical point A7, eigenvalues E1, E2

are negative whereas E3 and E4 vanish. Therefore, linear stability theory fails to determine its stability and
other complicated mathematical tools like center manifold theory are required. The full analysis of the stability
of this point using center manifold theory is given in the appendix A. From the analysis, point A7 corresponds
to a late time scalar field dominated attractor if Γ(0) > 1 (or n > 0). From the above analysis we see that for
n > 0 the Universe evolve towards a unique late time attractor A7 through a matter dominated phase O. Thus,
we see that for this potential with n > 0, this cosmological interacting model has only one late time accelerated,
scalar field dominated attractor for a wide range of initial conditions. If instead n < 0 then there is no finite
late time attractor and all trajectories evolve towards some critical point at infinity. This can be shown for
example in the behaviour displayed in Fig. 3, where point A7 is a global attractor for n > 0 while it becomes a
saddle if n < 0.

B. The case α = 3

We will now investigate the case where α is different from 1. Following [21] we will consider α = 3 for
simplicity of the analysis. The qualitative properties of critical points O, A1±, A2, A3, A7 remain roughly the
same as the case α = 1, except a slightly difference in the stability regions of (β, s∗) parameter space. The
stability regions of the critical points in the (β, s∗) parameter space are shown in Fig. 4. Point O corresponds
again to an unaccelerated matter dominated universe (weff = w). It is still a saddle as two of its corresponding
non-vanishing eigenvalues are opposite in sign. Points A1± correspond to an unaccelerated scalar field kinetic
energy dominated solution, with stiff fluid effective EoS (weff = 1). Point A1+ is an unstable node whenever

β < −
√

6
2 (3w + 1), s∗ <

√
6 and dg(s∗) < 0, otherwise it is a saddle, whereas point A1− is an unstable node

whenever β >
√

6
2 (3w + 1), s∗ > −

√
6 and dg(s∗) > 0, otherwise it is a saddle. Point A2 corresponds to a

scaling solution with weff = w: the Universe behaves as if it is matter dominated even though both DE and
DM contributions are both non-zero. Point A3 characterises a scalar field dominated universe. It represents
an accelerated universe whenever s2

∗ < 2. It is a stable node when s2
∗ < 3(w + 1), s2

∗ < s∗β + (9w + 1) and
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FIG. 4: Stability region of critical points A2, A3, A4 and A6 in the (β, s∗) parameter space. Regions I+, V−, VII+

correspond to the regions of stability of point A2 when dg(s∗) > 0, regions I−, V+, VII− correspond to the regions of
stability of point A2 when dg(s∗) < 0. Regions III+, IV− and VI+ correspond to the regions where A3 is stable when
dg(s∗) > 0 and regions III−, IV+ and VI− correspond to the regions where A3 is stable when dg(s∗) < 0. Regions I+,
II+, III+, IV+ and V+ correspond to regions where point A4 is stable when dg(s∗) > 0 and regions I−, II−, III−, IV−
and V− correspond to regions where point A4 is stable when dg(s∗) < 0. Region II+ corresponds to region where point
A6 is stable when dg(s∗) > 0 whereas region II− corresponds to region where point A6 is stable when dg(s∗) < 0. Here
we have assumed w = 0 and α = 3.

s∗dg(s∗) > 0, otherwise it is a saddle. Point A4 corresponds to a solution where the scalar field kinetic energy
and the interacting energy density do not vanish, while the matter energy density instead vanishes. It stands

for an accelerated universe whenever 2(β2−3)−27w(w+1)
3w+1 > 1 and it can be stable as illustrated numerically in

Fig. 4 (at least for w = 0) as contrary to the case α = 1. Point A5 exists only when β2 ≥ 3(w + 1)(3w + 1).
It corresponds to the solution where the potential energy density vanishes but the scalar field kinetic energy,
matter energy density and interacting energy density do not vanish. It also represents an unaccelerated scaling
solution where the Universe expands as if it was matter dominated (weff = w). This point is saddle (at least for
w = 0). Again, due to the complexity of critical point A6, we will focus only on pressure-less fluid (w = 0) to
analyse its stability. It corresponds to an accelerated universe when s∗

β > − 2
7 , and it defines a solution where

the matter energy density vanishes but the scalar field and interacting energy density are both non-zero. It
is either a stable or a saddle node depending on the values of s∗ and β. This behaviour has been confirmed
numerically as shown in Fig. 4 by considering s∗ as a parameter without specifying the concrete form of the
scalar field potentials. Finally, critical point A7 corresponds to an accelerated scalar field dominated solution
(weff = −1). Similarly to the case α = 1, it is stable whenever g(0) > 0 and saddle whenever g(0) < 0. It is a
non-hyperbolic point if g(0) = 0. Exactly as in the case α = 1 this point is stable whenever Γ(0) > 1, as can be
verified using center manifold theory.

From the above analysis, we see that the cosmological dynamics is complicated compared to the case of
α = 1. In this case depending on some values of the parameters, we obtain multiple attractors, namely A4

and A2 or A4 and A3 (see Fig. 4). However as in the case α = 1, this model can successfully describe the late
time behaviour of the Universe. We shall now study the stability of critical points for the same two concrete
potentials considered before.

Example I: V = V0 sinh−η(λφ)

As in the case α = 1, critical points A1±, A2, A3, A4, A5, A6 will have each exactly two copies for two
solutions s∗ = ±ηλ. Point O always exists and its properties do not depend on the scalar field potential. Point

A1+ is an unstable node whenever β < −
√

6
2 (3w + 1), ηλ <

√
6 and λ < 0, otherwise it is a saddle, whereas

point A1− behaves as an unstable node whenever β >
√

6
2 (3w + 1), ηλ > −

√
6 and λ > 0, otherwise it behaves

as a saddle. The regions of stability of points A2, A4 and A6 in (β, λ) parameter space are given in Fig. 5 for
w = 0 and η = 1. Point A2 corresponds to an unacclerated scaling solution with weff = w. It is a late time
attractor for some values of parameters β, λ. For example if we numerically choose w = 0, β = 1, η = 1, λ = 3
we obtain eigenvalues E1 = −7, E2 = −6, E3 = −0.75 + 1.56i, E3 = −0.75 − 1.56i. Point A3 represents an
accelerated universe whenever η2λ2 < 2. It is a stable node when η2λ2 < 3(w + 1), η2λ2 < ηλβ + (9w + 1) and
η > 0, otherwise it is a saddle. Point A4 corresponds to an accelerated solution. It is a late time accelerated
attractor for some values of parameters β, λ as outline in Fig. 5. For example if we numerically choose w = 0,
β = −2, η = 1, λ = 2, we obtain eigenvalues E1 = −3.5, E2 = −2.5, E3 = −16, E4 = −2 and weff = −0.66.
Due to complicated eigenvalues of point A5, we consider only the physically interesting case w = 0, for which it
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FIG. 5: Stability region of critical points A2, A3, A4 and A6 in the (β, λ) parameter space. Regions I, V, VII correspond
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FIG. 6: Plot of weff versus N of model I with potential V = V0 sinh−η(λφ) showing a transition from matter dominated
epoch (point O) to a DE dominated epoch (point A3). Here we have taken w = 0, α = 3, β = 2, λ = 0.5, η = 1.

can be seen that this critical point is a saddle. In a similar fashion, due to the complexity of critical point A6,
we will study its stability only for a pressure-less matter fluid. It corresponds to an accelerated universe when
ηλ
β > − 2

7 . It is either a stable or a saddle node depending on the values of η, λ and β (see Fig. 5). Critical

point A7 corresponds to a late time attractor whenever η < 0, it is a saddle whenever η > 0.
To summarise, depending on the initial conditions, the Universe can evolve from a stiff matter solution A1±

to either a scaling solution A2, to an accelerated scalar field dominated solution A3 (or A7), to an accelerated
attractor A4, or to an accelerated attractor A6 through a matter dominated solution O. Thus, this model can
describe a transition of the Universe from a matter dominated phase to a DE dominated phase. This phenomena
can be clearly seen from Fig. 6, which shows that after a long lasting period of matter domination (weff = 0),
the Universe is then dominated by DE (weff = −1). On the other hand this model can also be used to describe
an early inflationary cosmological phase with a crossing of the phantom barrier, as shown in Fig. 7. This
scenario is represented by trajectories starting from a stiff dominated solution, then evolving towards point A4,
which characterises the inflationary era, and finally ending in the late time attractor point A2, where radiation
domination is attained for w = 1/3. As it is clear from Fig. 7, phantom crossing might be achieved before a
period of standard inflation, whose duration depends on the initial conditions. Moreover a graceful exit from
inflation is automatically obtained since radiation domination is achieved right after the period of accelerated
expansion without the need of a reheating process. This model can thus be applied to both late time and early
time phenomenology with distinguishing features that might provide useful observational signatures to look for
in the astronomical data.
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FIG. 7: Evolution of the effective equation of state (weff) for interacting model I with potential V = V0 sinh−η(λφ). Here
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3
, α = 3, β = 2

√
3, λ = 1, η = 2.

Point x y z s Existence weff Acceleration

B1± ±1 0 0 s∗ Always 1 No

B2

√
3
2

(1+w)
s∗

√
3
2

√
(1+w)(1−w)

s∗

s2∗−3(1+w)

s2∗
s∗ Always w No

B3
s∗√

6

√
1− s2∗

6
0 s∗ s2

∗ ≤ 6
s2∗
3
− 1 s2

∗ < 2

B4 0 0 1 s Always w No

B5 0 1 0 0 Always −1 Always

TABLE IV: Critical points of Model II.

Example II: V = M4+n

φn

As discussed in the case α = 1, for this potential s∗ = 0. All critical points except point A2 exist and all of

them are non-hyperbolic (see Table III). Point A1+ behaves as an unstable node whenever β < −
√

6
2 (3w + 1)

otherwise it is a saddle, whereas point A1− behaves as an unstable node whenever β >
√

6
2 (3w+ 1) otherwise it

is a saddle. Critical point A3 coincides with A7. This point is non-hyperbolic for this potential as s∗ = 0 and
g(0) = 0. The stability of the center manifold of point A3 is analyzed in the appendix A. As in the case of α = 1
it can be seen that this point corresponds to a late time attractor if Γ(0) > 1 (i.e. if n > 0). Linear analysis fails
to determine the stability of the non-hyperbolic critical point A4. However, due to its complicated expression
we use numerical perturbation methods to check its stability, rather than doing it analytically with the centre
manifold techniques. These numerical methods have been used in several cosmological models and found to be
successful to determine the stability of complicated non-hyperbolic critical points [32, 42, 69]. Numerically we
thus observe that perturbed trajectories around critical point A4 do not asymptotically approach its coordinates,
instead they are always attracted to the coordinates of point A7 (or A3). We can therefore conclude that critical
point A4 is not stable. Critical point A5 is not stable as its eigenvalue E1 is positive whereas critical point A6

behaves as a saddle as its eigenvalues E2 and E3 are of opposite sign.
From the above analysis, we see that, choosing a suitable set of model parameters, the Universe can undergo

a transition from a matter dominated phase O to a DE dominated phase A3, meaning that in this case the
model can successfully describe the late time behaviour of the Universe.

V. MODEL II

This section deals with the analysis of model II of the dynamical system (22)-(25) where we assume the
interacting energy density to take the simple form ρint = γφρ, where γ is a dimensionless parameter; see
Table I. As before we can define the effective EoS parameter in this model to be

weff = w − (w − 1)x2 − (1 + w)y2 . (36)

Note that weff is independent of the interacting energy component since it does not depend on z.
The existence and cosmological properties of the critical points for this model are given in Table IV. There

are up to six critical points, and all critical points are independent of the parameter γ. The corresponding
eigenvalues of the critical points, determining their stability properties, are given in Table V. Critical points
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Ξ± = − 3
4
(1− w)± 3

4s∗

√
(1− w)(24(1 + w)2 − s2

∗(7 + 9w))

Point E1 E2 E3 E4 Stability

B1± 3(1− w) 3(1− w) 3∓
√

3
2
s∗ ∓

√
6dg(s∗) Unstable node/saddle

B2 0 Ξ+ Ξ− − 3(w+1)dg(s∗)
s∗

Non-hyperbolic

B3
s2∗−6

2
s2
∗ − 3(1 + w) s2

∗ − 3(1 + w) −s∗dg(s∗) Stable node/saddle

B4 0 0 3
2
(w − 1) 3

2
(w + 1) Saddle

Stable if g(0) > 0

B5 −3(w + 1) −3(w + 1) 1
2

(
−
√

12g(0) + 9− 3
)

1
2

(√
12g(0) + 9− 3

)
Saddle if g(0) < 0

See App. B if g(0) = 0

TABLE V: Stability of critical points of Model II.

B1±, B2 and B3 depend on the particular potential considered. Point B2 exists for any values of s∗ and w in
contrast to the canonical case without interaction, whereas point B3 exists only when s2

∗ ≤ 6. Critical point B4

exists for any arbitrary potentials. On the other hand critical point B5 corresponds to the case where the scalar
field potential is effectively constant as the φ-derivative of the potential vanishes. Nevertheless its stability
depends on the concrete form of the potential. Note that critical point B3 reduces to B5 when s∗ = 0.

Critical points B1± correspond to a scalar field kinetic energy dominated solutions with stiff fluid effective
EoS (weff = 1). Critical point B1+ is an unstable node when s∗ <

√
6 and dg(s∗) > 0, whereas point B1− is an

unstable node when s∗ > −
√

6 and dg(s∗) < 0, otherwise they are both saddles. Critical point B2 represents
a solution dominated by the scalar field energy density and the interacting energy density, with the Universe
behaving as if it was matter dominated (weff = w). This point is non-hyperbolic due to at least one vanishing
eigenvalue. Therefore, one cannot determine the stability of the point using linear stability theory. Due to
the complicated expressions of the eigenvalues of critical point B2, we will not apply center manifold theory
here. Instead we will study its stability numerically, postponing the analysis once a specific potential has been
selected. Critical point B3 corresponds to a scalar field dominated universe. This point describes an accelerated
universe whenever s2

∗ < 2. It is a stable node when s2
∗ < 3(1 + w) and s∗dg(s∗) > 0, otherwise it is a saddle.

Point B4 stands for a solution dominated by the interacting energy density with vanishing scalar field and
matter energy densities, where the universe behaves as if it was matter dominated (weff = w). This point is
non-hyperbolic but it behaves as a saddle since the non-vanishing eigenvalues are opposite in sign. Critical
point B5 corresponds to an accelerated scalar field dominated solution. It is stable whenever g(0) > 0, it is a
saddle whenever g(0) < 0 and it is non-hyperbolic in nature for g(0) = 0. For this latter case the full analysis
of the stability of this point using center manifold theory is given in appendix B. Again this point corresponds
to a late time scalar field dominated attractor if Γ(0) > 1.

From the above analysis, we see that the dynamics of this model is similar to the case of canonical scalar
field without interaction. In this case, the Universe evolves from stiff matter solutions B1± and evolves toward
a scaling solution B2 or an accelerated scalar field dominated solution B3 (or B5). Note that points B2 and
B3 cannot be late time attractors simultaneously as B2 is not stable when s2

∗ < 3(1 + w). Interestingly, the
matter dominated phase, usually described by the origin O, is in this case replaced by point B4, corresponding
to an interaction dominated phase with weff = w. In order to deeper understand the role of the scalar field
potential on the cosmological dynamics of this model and to analyze in detail the stability of non-hyperbolic
critical points, in what follows we consider two distinct concrete potentials in analogy to what done for model I.

Example I: V = V0 sinh−η(λφ)

In this case critical points B1±, B2, B3 will have each exactly two copies for two solutions s∗ = ±ηλ, while
point B4 exist for any arbitrary potentials. Point B5 does not exist for this potential. Critical point B1+ is
an unstable node when ηλ <

√
6 and λ > 0, whereas point B1− is an unstable node when ηλ > −

√
6 and

λ < 0, otherwise they are saddles. The stability of critical point B2 can now be determined in detail using
numerical perturbation technique. In Figs. 8(a)-8(d), we have numerically plotted the projections of the phase
space on the x, y, z, and s axes separately. We observe that depending on the values of parameters λ and η,
the perturbed solutions will asymptotically approach the point B2 as N →∞. Critical point B3 corresponds to
an accelerated universe whenever η2λ2 < 2. It is a stable node when η2λ2 < 3(1 +w) and η > 0, otherwise it is
a saddle. Critical point B4 behaves as a saddle. Critical point B5 is stable when η < 0, it is a saddle whenever
η > 0. Thus, we find that for some range values of the parameters, the observed late time behaviour of our
Universe can be successfully described by this model, as shown for example by Fig. 9 where the values w = 0,
γ = 1, λ = 4, η = −0.5 have been chosen.
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FIG. 8: (a). Time evolution of trajectories projected on x-axis approaching point B2; (b). Time evolution of of trajectories
projected on y-axis approaching point B2; (c). Time evolution of trajectories projected on z-axis approaching point B2;
(d). Time evolution of trajectories projected on s-axis approaching point B2. Here we have considered the potential

V = V0 sinh−η(λφ) (i.e., g(s) = 1
η
− ηλ2

s2
, s∗ = ±ηλ, dg(s∗) = 2ηλ2

s3∗
) with γ = 1, η = 2, λ = 1 and w = 0.
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FIG. 9: Plot of weff versus N of model II with potential V = V0 sinh−η(λφ) showing a transition from interaction
dominated epoch (point B4) with weff = 0 to a DE dominated epoch (point B5). Here we have taken w = 0, γ = 1,
λ = 4, η = −0.5.
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Example II: V = M4+n

φn

As discussed earlier for this potential s∗ = 0, and so critical point B2 does not exist. In this case, point B3

coincides with point B5. All remaining critical points are non-hyperbolic points. Critical points B1± behaves as
an unstable node, whereas critical point B4 behaves as a saddle. The stability of point B3 (or B5) is determined
using center manifold theory (since the eigenvalues E2, E3 vanish as g(0) = 0). The full analysis is shown in
appendix B and leads to the result that this point corresponds to a late time attractor if Γ(0) > 1 (i.e. if n > 0).
Hence, we see that the Universe can evolve from a stiff matter dominated phase towards a DE dominated phase
through a matter phase dominated by the interaction between DE and DM for a wide range of initial conditions.
The evolution is in this case similar to the one found in the previous example (see Fig. 9) and roughly coincides
with the one described by ΛCDM, although during the matter phase the interaction between DE and DM is
present and thus differences might arise at the level of perturbations for example.

VI. CONCLUSION

In the present paper, we have employed dynamical systems techniques to study the background cosmolog-
ical evolution of two interacting DE models derived from a newly proposed variational method. This type
of interacting theories, named Scalar-Fluid theories, is constructed at the Lagrangian level and thus is well
motivated by an underlining theoretical framework, even though not a fundamental one. In analogy with the
investigation of [21], in our analysis we have considered two different algebraic coupling functions defining the
DM-DE interaction within the Scalar-Fluid action; see Table I. In fact the main scope of our work has been
to extend the dynamical analysis of [21], performed only for a scalar field exponential potential, to a broader
class of potentials. This in general leads to higher dimensional dynamical systems than the three-dimensional
ones obtained with an exponential potential. We found that these extended autonomous systems contain more
critical points than the cases studied in [21]. We also found that there are some critical points which depend
on the specific form of the potential for their existence (e.g., A1± − A6, B1± − B3), or their stability (e.g., A7

and B5), while other critical points are independent of the specific form of the scalar field potential (e.g., points
O, B4). For this type of extension, we also obtained some non-hyperbolic critical points such as points A7 (see
Table III), B2 and B5 (see Table V). For these points we have used center manifold theory or numerical methods
of perturbed trajectories to determine their stability. In order to better understand the cosmological dynamics,
we also have considered two concrete potentials as examples: the hyperbolic potential V = V0 sinh−η(λφ) and

the power law potential V = M4+n

φn .

In model I, where the DE-DM coupling term in the Scalar-Fluid Lagrangian is chosen to be ρint =
γ ρα exp(−βφ), we obtained physically interesting solutions like a standard matter dominated solution (point
O), late time accelerated scalar field dominated solutions (points A3, A7) and also a late time accelerated scaling
solution (point A6) which can possibly alleviate the coincidence problem (see Sec. IV A). The behaviour of this
last critical point is similar to the one generally arising in standard interacting DE models, where accelerating
scaling solutions are usually attained. Model I can also be employed to describe an inflationary era with in-
teresting features, for example crossing of the phantom barrier (see IV B). This shows that the model can also
be applied to explain the observed phenomenology at early times, with possible distinguishing signatures that
might be present in the astronomical data. Finally in model I (with α = 3), we also obtain multiple late time
attractors for some choices of the parameters. These kinds of situations are usually of great theoretical and
mathematical interest, for example regarding the choice of initial conditions and bifurcation theory.

The background cosmological dynamics of model II, where the ρint = γφρ coupling is considered, is similar
to the case of an uncoupled standard scalar field model, except that the matter dominated solution is replaced
by an interacting dominated solution between DE and DM (point B4). This scenario well reproduces the
observed dynamics of the universe and, although undistinguishable at the background level from the standard
ΛCDM evolution, might produce differences at the perturbation level. Cosmological perturbation analysis and
comparison against astronomical observations constitute the next natural step in the investigations of these
interacting models, but they lie beyond the scope of our present study, and will be left for future works.

To summarise, the analysis presented in this paper reveals that the results of [21] obtained with an exponential
potential only, can be equally derived for other scalar field potentials, similarly e.g. to the case of quintessence
[56] and k-essence [42]. On a physical ground we note in fact that in both Model I and Model II a matter to DE
transition can be achieved at late times. This situation well describes the observed background behaviour of
our Universe and could in principle produce detectable discrepancies from ΛCDM at the linear (or non-linear)
perturbation levels.
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Appendix: Center Manifold Theory (CMT)

Mathematical Background

In this section we briefly briefly review the mathematical background of CMT. The detailed mathematical
background with examples is given in [65, 66], while similar applications to cosmology can be found in [67, 68].
Linear stability theory fails to determine the stability of a critical point whose stability matrix contains at least
one vanishing eigenvalue. If at least (the real part of) one of the non vanishing eigenvalues is positive then the
critical point is unstable, but if all non vanishing eigenvalues are negative then stability is not guaranteed. In
these cases CMT can be applied. The main objective of CMT is to investigate the dynamics on the dimensionally
reduced space identified by the eigenvectors corresponding to the vanishing eigenvalues. This reduced space is
called the center manifold and its existence is always guaranteed.

Without any loss of generality we assume that the critical point is the origin (this can always be achieved by
translating the origin to the critical point). Any arbitrary non-linear system of differential equations with only
negative and vanishing eigenvalues in the stability matrix can be written as

u′ = Au+ f(u, v) (37)

v′ = Bv + g(u, v) (38)

where (u, v) ∈ Rc × Rs with f and g satisfying

f(0, 0) = 0, Df(0, 0) = 0

g(0, 0) = 0, Dg(0, 0) = 0

Here A is a c × c matrix with eigenvalues having zero real part (c is the number of vanishing eigenvalues), B
is a s× s matrix with eigenvalues having negative real part (s is the number of non vanishing eigenvalues) and
Df denotes the Jacobian matrix of f . The center manifold is characterized by a function h : Rc → Rs and is
defined as:

W c(0) = {(u, v) ∈ Rc × Rs : v = h(u), ‖u‖ < δ, h(0) = 0, Dh(0) = 0} , (39)

for a sufficiently small δ. h is at least of class C2 and ‖ · ‖ denotes the Euclidean norm. The dynamics of the
system (37)-(38) restricted to the center manifold W c(0) is determine by the equation

u′ = Au+ f(u, h(u)) (40)

for a sufficiently small u ∈ Rc. The stability/instability of the system (40) implies the stability/instability of
the original system (37)-(38). The problem now is how to determine h. It can be proven that h must satisfy
the following quasilinear partial differential equation [65, 66]

Nh(u) ≡ Dh(u) (Au+ f(u, h(u))−Bh(u)− g(u, h(u))) = 0 (41)

In general it is often impossible to solve h from Eq. (41) analytically. Fortunately, the solution h of (41) can
be approximate by a power series expansion valid up to a desired degree of accuracy (see [65, 66]). In order to
explain how this works, we shall now apply this method to determine the stability of point A7 for model I and
point B6 of model II.

Appendix A: Center manifold dynamics for point A7 of model I

In this appendix, we apply center manifold theory to study the stability of point A7 = (0, 1, 0, 0) when
g(0) = 0 for general values of α. As mentioned in the main text this point is a saddle whenever α < 0. Firstly,
we translate the point (0, 1, 0, 0) to the origin by using the transformation x → x, y → y + 1, z → z, s → s.
Eqs. (22)–(25) then become

x′ = −1

2

(
3x
(
(w + 1)(y + 1)2 + wz − w + 1

)
+ 3(w − 1)x3 −

√
6s(y + 1)2

)
+

3

2
xz (α(w + 1)− 1) +

√
3

2
βz,

(42)

y′ = −1

2
(y + 1)

(
3(w − 1)x2 + 3

(
(w + 1)(y + 1)2 + wz − w − 1

)
+
√

6sx
)

+ (y + 1)
3

2
z (α(w + 1)− 1) , (43)

z′ = 3z (α(w + 1)− 1) (z − 1)− 2

√
3

2
βzx− 3z

(
(w − 1)x2 + (w + 1)(y + 1)2 + w(z − 1)

)
, (44)

s′ = −
√

6x g(s), (45)
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Using the eigenvectors of the stability matrix of A7 in the transformed system to form a new basis, we now
introduce a new set of variables given by

X

Y

Z

S

 =


1 0 1

6
β
√

6
α(w+1)−1 −

1√
6

0 1 − 1
2 0

0 0 1 0

0 0 0 1



x

y

z

s


In terms of these new set of variables, the system of equations can now be written as

X ′

Y ′

Z ′

S′

 =


−3 0 0 0

0 −3(w + 1) 0 0

0 0 −3α(w + 1) 0

0 0 0 0



X

Y

Z

S

+


g1

g2

g3

f


where f, g1, g2, g3 are polynomials of degree greater than 2 in (X, Y, Z, S) with

f(X,Y, Z, S) = −
(Γ(S)− 1)S2

(√
6αX(w + 1) + αS(w + 1)−

√
6X − β Z − S

)
α (w + 1)− 1

, (46)

whereas g1, g2 and g3 are not shown due to their lengths. Note that the dynamical system is now in the form
(37)–(38). At this point the coordinates which correspond to non-zero eigenvalues (X,Y, Z) can be approximated
in terms of S by functions

h1(S) = a2S
2 + a3S

3 +O(S4), (47)

h2(S) = b2S
2 + b3S

3 +O(S4), (48)

h3(S) = c2S
2 + c3S

3 +O(S4), (49)

respectively. Thus the quasilinear partial differential equation which the functions

h =

 h1

h2

h3


have to satisfy is given by

Dh(S) [AS + F(S,h(S))]−Bh(S)− g(S,h(S)) = 0 (50)

Here,

g =

 g1

g2

g3

 , F = g, B =

 −3 0 0

0 −3(w + 1) 0

0 0 −3α(w + 1)

 , A = 0 .

In order to solve the Eq. (41), we substitute A, h, F, B, g into it and compare equal powers of S in order to
obtain the series that approximates h(S). Thus on comparing powers of S from both sides of Eq. (41) we obtain
the constants a2, a3, b2, b3, c2, c3 where

a2 = 0, a3 =
Γ(0)− 1

3
√

6
, b2 = − 1

12
, b3 = 0, c2 = 0, c3 = 0. (51)

Now, the dynamics of the reduced system is determined by the equation

S′ = AS + F(S,h(S)) , (52)

namely

S′ = − (Γ(0)− 1)S3 +O(S4) . (53)

From this last equation we can immediately conclude that point A7 corresponds to a late time attractor if
Γ(0) > 1 and α > 0.
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Appendix B: Center manifold dynamics for point B5 of model II

In this appendix we apply center manifold theory to study the stability of point B5 when g(0) = 0. As in
App. A, we first translate the point (0, 1, 0, 0) to the origin by using the transformation x → x, y → y + 1,
z → z, s→ s. Then Eqs. (22)-(25) become

x′ = −1

2

(
3x
(
(w + 1)(y + 1)2 + wz − w + 1

)
+ 3(w − 1)x3 −

√
6s(y + 1)2

)
+

3

2
xwz +

√
3

2
γ(1− x2 − (y + 1)2 − z),

(54)

y′ = −1

2
(y + 1)

(
3(w − 1)x2 + 3

(
(w + 1)(y + 1)2 + wz − w − 1

)
+
√

6sx
)

+
3

2
(y + 1) z (α(w + 1)− 1) , (55)

z′ = 3wz(z − 1)− 2

√
3

2
γ(1− x2 − (y + 1)2 − z)x− 3z

(
(w − 1)x2 + (w + 1)(y + 1)2 + w(z − 1)

)
, (56)

s′ = −
√

6x g(s), (57)

Using the eigenvectors of the Jacobian matrix of point B5 in the transformed system as a new basis, we now
introduce a new set of variables given by

X

Y

Z

S

 =


1 1

3
γ
√

6
w

1
6
γ
√

6
w − 1√

6

0 0 1 0

0 1 0 0

0 0 0 1



x

y

z

s


In terms of these new set of variables the system of equations can now be written as

X ′

Y ′

Z ′

S′

 =


−3 0 0 0

0 −3(w + 1) 0 0

0 0 −3(w + 1) 0

0 0 0 0



X

Y

Z

S

+


g1

g2

g3

f


where f, g1, g2, g3 are polynomials of degree greater than 2 in (X, Y, Z, S) with

f(X,Y, Z, S) =
S2 (Γ(S)− 1)

w
(
√

6wX + 2γZ − γY − Sw), (58)

whereas g1, g2 and g3 are again not shown due to their lengths. Again, following the steps outlined in App. A,
by comparing powers of S from both sides of Eq. (41) we obtain the constants a2, a3, b2, b3, c2, c3 where

a2 = − 1

36

γ
√

6

w
, a3 =

Γ(0)− 1

3
√

6
, b2 = 0, b3 = 0, c2 = − 1

12
, c3 = 0. (59)

The dynamics of the reduced system on the center manifold is thus determined by the equation

S′ = − (Γ(0)− 1)S3 +O(S4) . (60)

We can then conclude that point B5 corresponds to a late time attractor if Γ(0) > 1, otherwise it is unstable
(saddle).
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