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UAbstract 

 

We show that a differential variant of the Heisenberg uncertainty relations 
emerges naturally from induced matter theory, as a sum of line elements in both 
momentum & Minkowski spaces. 
 
 
UIntroduction 

 

  Just after the introduction of Kaluza-Klein theory in the 1920’s [1,2], Campbell 
[3] and later Magaard [4] have argued that it is possible to embed a n-dimensional 
theory into a n+1 dimensional manifold.  Today, a few workers are using this basic 
notion to investigate a wide range of theoretical topics, from brane worlds[5-7] 
and cosmology [8-11], to relativistic quantum mechanics [12-14]. 
Induced matter theory posits that matter is in fact a direct manifestation of a 
non-compactified, fifth spatial dimension [15].  
  Since matter is intrinsically quantum-mechanical (QM), we argue here that the 
origin of QM uncertainties in energy-momentum and space-time, must ultimately 
originate in the fifth dimension, and are thus geometric in nature.  As Moffat has 
recently argued [16], there exist completely dualistic descriptions of classical 
particle motion, such that one may construct all the mathematical elements of 
general relativity, e.g., line elements,  affine connexions, curvature tensors, 
space-time tensors, etc., in momentum space, in a fashion exactly analogous to 
a psuedo-Riemannian space. 
  Here, we extend this program, and argue that the propagation of a complex 
scalar field in a 5-D space-time continuum, leads to both a 5-momentum 
conservation condition and in turn, to a geometrical origin of the Heisenberg 
uncertainty relations. 
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Index convention shall be Greek for 3+1 dimensions (e.g., µ = 0 - 3) and Latin 

for 4 +1 dimensions (e.g., A = 0 - 4), with metric signatures (+---) and (+----) 
respectively. 
 
UTheory 

 
We begin by investigating the propagation of a massive, complex scalar field, via the 
Klein-Gordon equation (KGE), 
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 Defining the 5-momenta as , we rewrite (3) as, SP
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Rewriting eq. (7), and forming a bilinear null invariant, 
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Eq.(11) is a Heisenberg uncertainty-like relation, in which the mean value of the two 
invariant line elements in canonically-conjugate metric spaces, contributes to a total 
uncertainty in four-momentum and -position, scaled by Dirac’s action constant. 
 

UConclusion 

 

From the physics of STM theory, we have shown that the propagation of a 
complex scalar field in 5-D, leads directly to an invariant with a form similar to 
the Heisenberg uncertainty relations.  Moreover, the `backbone’ of these 
relations originates in the line elements of the differential geometries of 
momentum and Minkowski spaces.  This suggests that there may be a common 
descriptor to both the geometric and probability notions of relativistic quantum 
mechanics. 
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