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Abstract

A five-dimensional (5D) generalized Gödel-type manifolds are examined in the

light of the equivalence problem techniques, as formulated by Cartan. The necessary

and sufficient conditions for local homogeneity of these 5D manifolds are derived.

The local equivalence of these homogeneous Riemannian manifolds is studied. It is

found that they are characterized by three essential parameters k, m2 and ω : identical

triads (k,m2, ω) correspond to locally equivalent 5D manifolds. An irreducible set of

isometrically nonequivalent 5D locally homogeneous Riemannian generalized Gödel-

type metrics are exhibited. A classification of these manifolds based on the essential

parameters is presented, and the Killing vector fields as well as the corresponding

Lie algebra of each class are determined. It is shown that the generalized Gödel-type

5D manifolds admit maximal group of isometry Gr with r = 7, r = 9 or r = 15

depending on the essential parameters k, m2 and ω . The breakdown of causality in

all these classes of homogeneous Gödel-type manifolds are also examined. It is found

that in three out of the six irreducible classes the causality can be violated. The

unique generalized Gödel-type solution of the induced matter (IM) field equations is

found. The question as to whether the induced matter version of general relativity

is an effective therapy for these type of causal anomalies of general relativity is also

discussed in connection with a recent work by Romero, Tavakol and Zalaletdinov.
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1 Introduction

The field equations of the general relativity theory, which in the usual notation are written
in the form

Gαβ = κ Tαβ , (1.1)

relate the geometry of the spacetime to its source. The general relativity theory, however,
does not prescribe the various forms of matter, and takes over the energy-momentum
tensor Tαβ from other branches of physics. In this sense, general relativity (GR) is not a
closed theory. The separation between the gravitational field and its source has been often
considered as one undesirable feature of GR [1] – [3].

Recently, Wesson and co-workers [4, 5] have introduced a new approach to GR, in
which the matter and its role in the determination of the spacetime geometry is given from
a purely five-dimensional geometrical point of view. In their five-dimensional (5D) version
of general relativity the field equations are given by

ĜAB = 0 . (1.2)

Henceforth, the five-dimensional geometrical objects are denoted by overhats and Latin
letters are 5D indices and run from 0 to 4. In this new approach to GR the 5D vacuum field
equations (1.2) give rise to both curvature and matter in 4D. Indeed, it can be shown [5]
that it is always possible to rewrite the fifteen field equations (1.2) as a set of equations
such that ten of which are precisely Einstein’s field equations (1.1) in 4D with an induced
energy-momentum

κ Tαβ =
φα ; β

φ
−

ε

2 φ2

{
φ∗ g∗

αβ

φ
− g∗∗

αβ + gγδ g∗

αγ g∗

βδ −
gγδ g∗

γδ g∗

αβ

2

+
gαβ

4

[
g∗γδ g∗

γδ + (gγδ g∗

γδ)
2
] }

, (1.3)

where the Greek letters denote 4D indices and run from 0 to 3, g44 ≡ ε φ2 with ε = ±1,
φα ≡ ∂φ/∂xα, a star denotes ∂/∂x4, and a semicolon denotes the usual 4D covariant
derivative. Obviously, the remaining five equations (a wave equation and four conservation
laws) are automatically satisfied by any solution of the 5D vacuum equations (1.2). Thus,
not only the matter but also its role in the determination of the geometry of the 4D
spacetime can be considered to have a five-dimensional geometrical origin. This approach
unifies the gravitational field with its source (not just with a particular field) within a
purely 5D geometrical framework. This 5D version of general relativity is often referred to
as induced matter gravity theory (IM gravity theory, for short). The IM theory has become
a focus of a recent research field [6]. The basic features of the theory have been explored
by Wesson and others [7] – [11], whereas the implications for cosmology and astrophysics
have been investigated by a number of researchers [12] – [32]. For a fairly updated list
of references on IM gravity theory and related issues we refer the reader to Overduin and
Wesson [6].

In general relativity, the causal structure of 4D spacetime has locally the same qual-
itative nature as the flat spacetime of special relativity — causality holds locally. The
global question, however, is left open and significant differences can occur. On large scale,
the violation of causality is not excluded. Actually, it has long been known that there
are solutions to the Einstein field equations which possess causal anomalies in the form
of closed timelike curves. The famous solution found by Gödel [33] in 1949 might not be
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the first but it certainly is the best known example of a cosmological model which makes
it apparent that general relativity, as it is normally formulated, does not exclude the ex-
istence of closed timelike world lines, despite its Lorentzian character which leads to the
local validity of the causality principle. Owing to its striking properties Gödel’s model
has a well-recognized importance and has to a certain extent motivated the investigations
on rotating cosmological Gödel-type models and on causal anomalies in the framework of
general relativity [34] – [52] and other theories of gravitation [53] – [63].

Two recent articles have been concerned with five-dimensional Gödel-type spacetimes.
Firstly in Ref. [64] the main geometrical properties of five-dimensional Riemannian mani-
folds endowed with a 5D counterpart of the 4D Gödel-type metric of general relativity were
investigated. Among several results, an irreducible set of isometrically nonequivalent 5D
homogeneous (locally) Gödel-type metrics were exhibited. Therein it was also shown that,
apart from the degenerated Gödel-type metric, in all classes of homogeneous Gödel-type
geometries there is breakdown of causality. As no use of any particular field equations was
made in this first paper, its results hold for any 5D Gödel-type manifolds regardless of the
underlying 5D Kaluza-Klein gravity theory. In the second article [65] the classes of 5D
Gödel-type spacetimes discussed in [64] were investigated from a more physical viewpoint.
Particularly, it was examined the question as to whether the induced matter theory of grav-
itation permits the family of noncausal solutions of Gödel-type metrics studied in [64]. It
was shown that the IM gravity excludes this class of 5D Gödel-type non-causal geometries
as solution to its field equations.

In both articles [64, 65] the 5D Gödel-type family of metrics discussed is the simplest
5D class of geometries for which the section u = const (u is the extra coordinate) is the
4D Gödel-type metric of general relativity. Actually the 5D Gödel-type line element of
both papers does not depend on the fifth coordinate u, and therefore as regards to the
IM theory a radiation-like equation of state is an underlying assumption of both articles.
However, it is well know [6] that the dependence of the 5D metric on the extra coordinate
is necessary to ensure that the 5D IM theory permits the induction of matter of a very
general type in 4D.

In this work, on the one hand, we shall examine the main geometrical properties of
a class of generalized Gödel-type geometries in which the 5D metric depends on the fifth
coordinate, generalizing therefore the results found in Ref. [64]. On the other hand, we
shall also investigate the question as to whether the induced matter gravity theory, as
formulated by Wesson and co-workers [4, 5], admits these generalized Gödel-type metrics
as solutions to its field equations, thus also extending the investigations of Ref. [65].

The outline of this article is as follows. In the next section we present a summary of
some important prerequisites for Section 3, where using the equivalence problem techniques
as formulated by Cartan [66] we derive the necessary and sufficient conditions for local
homogeneity of this class of 5D generalized Gödel-type manifolds. In Section 3 we also
exhibit an irreducible set of isometrically nonequivalent homogeneous generalized Gödel-
type metrics. In Section 4 we discuss the integration of the Killing equations and present the
Killing vector fields as well as the corresponding Lie algebra for all homogeneous generalized
Gödel-type metrics. In the last section we examine whether the IM field equations permit
solutions of this generalized Gödel-type class of geometries. The unique solution of this
type is found therein. The question as to whether the IM version of general relativity rules
out the existence of closed timelike curves of Gödel type is also discussed (Section 5) in
connection with a recent paper by Romero et al. [67].
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2 Prerequisites

The arbitrariness in the choice of coordinates in the metric theories of gravitation gives
rise to the problem of deciding whether or not two manifolds whose metrics g and g̃ are
given explicitly in terms of coordinates, viz.,

ds2 = gµν dxµ dxν and ds̃2 = g̃µν dx̃µ dx̃ν , (2.1)

are locally isometric. This is the so-called equivalence problem (see Cartan [66] for the local
equivalence of n-dimensional Riemannian manifolds, Karlhede [68] and MacCallum [69] for
the special case n = 4 of general relativity).

The Cartan solution [66] to the equivalence problem for Riemannian manifolds can be
summarized as follows. Two n-dimensional Lorentzian Riemannian manifolds Mn and
M̃n are locally equivalent if there exist coordinate and generalized n-dimensional Lorentz
transformations such that the following algebraic equations relating the frame components
of the curvature tensor and their covariant derivatives:

RA
BCD = R̃A

BCD ,

RA
BCD;M1

= R̃A
BCD;M1

,

RA
BCD;M1M2

= R̃A
BCD;M1M2

,

...

RA
BCD;M1...Mp+1

= R̃A
BCD;M1...Mp+1

(2.2)

are compatible as algebraic equations in
(
xµ, ξA

)
. Here and in what follows we use a

semicolon to denote covariant derivatives. Note that xµ are coordinates on the manifold Mn

while ξA parametrize the group of allowed frame transformations [n-dimensional generalized
Lorentz group usually denoted [70] by O(n − 1, 1) ]. Reciprocally, equations (2.2) imply
local equivalence between the n-dimensional manifolds Mn and M̃n.

In practice, a fixed frame is chosen to perform the calculations so that only coordinates
appear in the components of the curvature tensor, i.e. there is no explicit dependence on
the parameters ξA of the generalized Lorentz group.

Another important practical point to be considered, once one wishes to test the local
equivalence of two Riemannian manifolds, is that before attempting to solve eqs. (2.2)
one can extract and compare partial pieces of information at each step of differentiation
as, for example, the number {t0, t1, . . . , tp} of functionally independent functions of the
coordinates xµ contained in the corresponding set

Ip = {RA
BCD , RA

BCD;M1
, RA

BCD;M1M2
, . . . , RA

BCD;M1M2...Mp
} , (2.3)

and the isotropy subgroup {H0, H1, . . . , Hp} of the symmetry group Gr under which the
set corresponding Ip is invariant. They must be the same for each step q = 0, 1, · · · , p if
the manifolds are locally equivalent.

In practice it is also important to note that in calculating the curvature and its covariant
derivatives, in a chosen frame, one can stop as soon as one reaches a step at which the
pth derivatives (say) are algebraically expressible in terms of the previous ones, and the
residual isotropy group (residual frame freedom) at that step is the same isotropy group
of the previous step, i.e. Hp = H(p−1). In this case further differentiation will not yield
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any new piece of information. Actually, if Hp = H(p−1) and, in a given frame, the pth

derivative is expressible in terms of its predecessors, for any q > p the qth derivatives can
all be expressed in terms of the 0th, 1st, · · ·, (p − 1)th derivatives [66, 69].

Since there are tp essential coordinates, in 5D clearly 5−tp are ignorable, so the isotropy
group will have dimension s = dim (Hp), and the group of isometries of the metric will
have dimension r given by (see Cartan [66])

r = s + 5 − tp , (2.4)

acting on an orbit with dimension

d = r − s = 5 − tp . (2.5)

3 Homogeneity and Nonequivalent Metrics

The line element of the five-dimensional generalized Gödel-type manifolds M5 we are
concerned with is given by

dŝ2 = dt2 + 2 H(x) dt dy − dx2 − G(x) dy2 − F̃ 2(ũ) (dz̃2 + dũ2) , (3.1)

where H(x), G(x) and F̃ (ũ) are arbitrary real functions. By a suitable choice of coordinates
the line element (3.1) can be brought into the form

dŝ2 = [ dt + H(x) dy ]2 − dx2 − D2(x) dy2 − F 2(u) dz2 − du2 , (3.2)

where D2(x) = G + H2 and u clearly is a new fifth coordinate.
At an arbitrary point of M5 one can choose the following set of linearly independent

one-forms Θ̂A:

Θ̂0 = dt + H(x) dy , Θ̂1 = dx , Θ̂2 = D(x) dy , Θ̂3 = F (u) dz , Θ̂4 = du , (3.3)

such that the Gödel-type line element (3.2) can be written as

dŝ2 = η̂AB Θ̂A Θ̂B = (Θ̂0)2 − (Θ̂1)2 − (Θ̂2)2 − (Θ̂3)2 − (Θ̂4)2 . (3.4)

Here and in what follows capital letters are 5D Lorentz frame indices and run from 0 to 4;
they are raised and lowered with Lorentz matrices η̂AB = η̂AB = diag(+1,−1,−1,−1,−1),
respectively.

Using as input the one-forms (3.3) and the Lorentz frame (3.4), the computer algebra
package classi [69, 71], e.g., gives the following nonvanishing Lorentz frame components
R̂ABCD of the curvature:

R̂0101 = R̂0202 = −
1

4

(
H ′

D

)2

, (3.5)

R̂0112 =
1

2

(
H ′

D

)
′

, (3.6)

R̂1212 =
D′′

D
−

3

4

(
H ′

D

)2

, (3.7)

R̂3434 =
F̈

F
, (3.8)
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where the prime and the dot denote, respectively, derivative with respect to x and u.
For 5D (local) homogeneity from eq. (2.5) one must have tq = 0 for q = 0, 1, · · · p, that

is, the number of functionally independent functions of the coordinates xµ in the set Ip

must be zero. Therefore, from eqs. (3.5) – (3.8) we conclude that for 5D homogeneity it is
necessary that

H ′

D
= const ≡ − 2 ω , (3.9)

D′′

D
= const ≡ m2 , (3.10)

F̈

F
= const ≡ k . (3.11)

The above necessary conditions are also sufficient for 5D local homogeneity. Indeed,
under these conditions the nonvanishing frame components of the curvature reduce to

R̂0101 = R̂0202 = −ω2 , (3.12)

R̂1212 = m2 − 3 ω2 , (3.13)

R̂3434 = k . (3.14)

Following Cartan’s method for the local equivalence, we calculate the first covariant deriva-
tive of the Riemann tensor. One obtains the following non-null covariant derivatives of the
curvature:

R̂0112;1 = R̂0212;2 = ω (m2 − 4 ω2) . (3.15)

Clearly, regardless of the value of the constant k , the first covariant derivative of the cur-
vature is algebraically expressible in terms of the Riemann tensor. Moreover, the number
of functionally independent functions of the coordinates xµ among the components of the
curvature and its first covariant derivative is zero (t0 = t1 = 0). As far as the dimension
of the residual isotropy group is concerned we distinguish three different classes of lo-
cally homogeneous 5D generalized Gödel-type curved manifolds, according to the relevant
parameters m2, ω and k , namely [72]

1. dim (H0) = dim (H1) = 2 when

a) ω 6= 0 , any real k , m2 6= 4 ω2 ;

b) ω = 0 , k 6= 0 , m2 6= 0 ;

2. dim (H0) = dim (H1) = 4 when

a) ω 6= 0 , any real k , m2 = 4 ω2 ;

b) ω = 0 , k = 0 , m2 6= 0 ;

c) ω = 0 , k 6= 0 , m2 = 0 ;

3. dim (H0) = dim (H1) = 10 when ω = k = m2 = 0 .

Thus, from eqs. (2.4) and (2.5) one finds that the locally homogeneous 5D generalized
Gödel-type manifolds admit a (local) Gr, with either r = 7, r = 9 , or r = 15 acting on an
orbit of dimension d = 5, that is on the manifold M5.

The above results can be collected together in the following theorems:
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Theorem 1 The necessary and sufficient conditions for a five-dimensional generalized

Gödel-type manifold to be locally homogeneous are those given by equations (3.9) – (3.11).

Theorem 2 The five-dimensional homogeneous generalized Gödel-type manifolds are lo-

cally characterized by three independent real parameters ω, k and m2 : identical triads

(ω, k, m2) specify locally equivalent manifolds.

Theorem 3 The five-dimensional locally homogeneous generalized Gödel-type manifolds

admit group of isometry Gr with

(i) r = 7 if either of the above conditions (1.a) and (1.b) is fulfilled;

(ii) r = 9 if one of the above set of conditions (2.a), (2.b) and (2.c) is fulfilled;

(iii) r = 15 if the above condition (3) is satisfied.

We shall now focus our attention on the irreducible set of isometrically nonequivalent
homogeneous generalized Gödel-type metrics. These nonequivalent classes of metrics can
be obtained by a similar procedure to that used by Rebouças and Tiomno [41], namely by
integrating equations (3.9) – (3.11), and eliminating through coordinate transformations
the non-essential integration constants taking into account the relevant parameters accord-
ing to the above theorem 2. For the sake of brevity, however, we shall only present the
irreducible classes without going into details of calculations. It turns out that one ought
to distinguish six classes of metrics according to:

Class I : m2 > 0 , any real k , ω 6= 0. The line element for this class of homogeneous
generalized Gödel-type manifolds can always be brought [in cylindrical coordinates (r, φ, z)]
into the form

dŝ2 = [ dt + H(r) dφ ]2 − D2(r) dφ2 − dr2 − F 2(u) dz2 − du2 (3.16)

with the metric functions given by

H(r) =
2 ω

m2
[1 − cosh (mr)] , (3.17)

D(r) = m−1 sinh (mr) , (3.18)

F (u) =





α−1 sin (α u) if k = −α2 < 0 ,
u if k = 0 ,
α−1 sinh (α u) if k = α2 > 0 .

(3.19)

According to theorem 3 the possible isometry groups for this class are either G7 (for
m2 6= 4 ω2) or G9 (when m2 = 4 ω2), irrespective of the value of k .

Class II : m2 = 0 , any real k , ω 6= 0. The line element for this class can be brought
into the form (3.16), with the metric function F (u) given by (3.19), but now the functions
H(r) and D(r) are given by

H(r) = −ω r2 and D(r) = r . (3.20)
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For this class from theorem 3 there is a group G7 of isometries, regardless of the value of
k.

Class III : m2 ≡ −µ2 < 0 , any real k , ω 6= 0. Similarly for this class the line element
reduces to (3.16) with F (u) given by (3.19) and

H(r) =
2 ω

µ2
[cos (µr) − 1] , (3.21)

D(r) = µ−1 sin (µr) . (3.22)

From theorem 3, regardless the value of k for this class there is a group G7 of isometries.
Class IV : m2 6= 0 , any real k , and ω = 0. We shall refer to this class as degenerated

Gödel-type manifolds, since the cross term in the line element, related to the rotation
ω in 4D Gödel model, vanishes. By a trivial coordinate transformation one can make
H = 0 with D(r) given, respectively, by (3.18) or (3.22) depending on whether m2 > 0 or
m2 ≡ −µ2 < 0. The function F (u) depends on the sign of k and is again given by (3.19).
For this class according to theorem 3 one may have either a G7 for k 6= 0, or a G9 for
k = 0 .

Class V : m2 = 0 , k 6= 0 , and ω = 0. By a trivial coordinate transformation one can
make H = 0 , D = r and F (u) = α−1 sin (α u) or F (u) = α−1 sinh (α u) depending on
whether k < 0 or k > 0 , respectively. From theorem 3 there is a group G9 of isometries.

Class VI : m2 = 0 , k = 0 , and ω = 0. From (3.12) – (3.14) this corresponds to the
5D flat manifold. Therefore, one can make H = 0 , D(r) = r and F (u) = u . Theorem 3
ensures that there is a group G15 of isometries.

4 Killing Vector Fields

In this section we shall present the infinitesimal generators of isometries of the 5D homo-
geneous generalized Gödel-type manifolds, whose line element (3.16) can be brought into
the Lorentzian form (3.4) with Θ̂A given by

Θ̂0 = dt + H(r) dφ , Θ̂1 = dr , Θ̂2 = D(r) dφ , Θ̂3 = F (u) dz , Θ̂4 = du , (4.1)

where the functions H(r) , D(r) and F (u) depend upon the essential parameters m2 , k
and ω according to the above classes of locally homogeneous manifolds.

Denoting the coordinate components of a generic Killing vector field K̂ by K̂u ≡
(Q, R, S, Z̄, U), where Q, R, S, Z̄ and U are functions of all coordinates t, r, φ, z, u, then
the fifteen Killing equations

K̂(A;B) ≡ K̂A;B + K̂B;A = 0 (4.2)

can be written in the Lorentz frame (3.4) – (4.1) as

Tt = 0 , Tu − Ut = 0 , (4.3)

Rr = 0 , Ur + Ru = 0 , (4.4)

Uu = 0 , (4.5)

D (Tr − Rt) − HrP = 0 , (4.6)

DPu + Uφ − HUt = 0 , (4.7)
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Tφ + HrR − DPt = 0 , (4.8)

Rφ − HRt − DrP + DPr = 0 , (4.9)

Pφ − HPt + DrR = 0 , (4.10)

Tz − F Zt = 0 , (4.11)

F Zr + Rz = 0 , (4.12)

Zz + U Fu = 0 , (4.13)

Uz + F Zu − Z Fu = 0 , (4.14)

DPz + F (Zφ − HZt) = 0 , (4.15)

where the subscripts denote partial derivatives, and where we have made

T ≡ H S + Q, P ≡ D S, and Z ≡ F Z̄ (4.16)

to make easier the comparison and the use of the results obtained in [42]. To this end
we note that with the changes u → z and U → Z the above equations (4.3) – (4.10)
are formally identical to the Killing equations (4) to (11) of [42]. However, in the equa-
tions (4.3) – (4.10) the functions T, R, P, U depend additionally on the fifth coordinate u.
Taking into account this similitude, the integration of the Killing equations (4.3) – (4.15)
can be obtained in two steps as follows. First, by analogy with (4) to (11) of Ref. [42]
one integrates (4.3) – (4.10), but at this step instead of the integration constants one
has integration functions of the fifth coordinate u. Second, one uses the remaining eqs.
(4.11) – (4.15) to achieve explicit forms for these integration functions and to obtain the
last component U of the generic Killing vector K.

We have used the above two-steps procedure to integrate the Killing equations (4.3) –
(4.15) for all class of homogeneous generalized Gödel-type manifolds. However, for the sake
of brevity, we shall only present the Killing vector fields and the corresponding Lie algebras
without going into details of calculations, which can be verified by using, for example, the
computer algebra program killnf, written in classi by Åman [71].

Class I : m2 > 0 , any real k , ω 6= 0. In the integration of the Killing equation for
this general class one is led to distinguish two different subclasses of solutions depending
on whether m2 6= 4 ω2 or m2 = 4 ω2. We shall refer to these subclasses as classes Ia and
Ib, respectively.

Class Ia : m2 > 0 , any real k , m2 6= 4 ω2. In the coordinate basis in which as (3.16)
is given, a set of linearly independent Killing vector fields KN (N is an enumerating index)
is given by

K1 = ∂t , K2 =
2 ω

m
∂t − m ∂φ , (4.17)

K3 = −
H

D
sin φ ∂t + cos φ ∂r −

Dr

D
sin φ ∂φ , (4.18)

K4 = −
H

D
cos φ ∂t − sin φ ∂r −

Dr

D
cos φ ∂φ , (4.19)

K5 = sin z ∂u +
Fu

F
cos z ∂z , (4.20)

K6 = cos z ∂u −
Fu

F
sin z ∂z , (4.21)

K7 = ∂z . (4.22)
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The Lie algebra has the following nonvanishing commutators:

[K2, K3] = −m K4 , [K2, K4] = m K3 , [K3, K4] = m K2 , (4.23)

[K5, K6] = − k K7 , [K5, K7] = −K6 , [K6, K7] = K5 . (4.24)

Therefore the corresponding algebra is LIa = Lk ⊕ τ ⊕ so (2, 1). Here and in what follows
the symbols ⊕ and ⊂+ denote and direct and semi-direct sum of sub-algebras, and the
sub-algebra Lk is so (3) for k < 0 , so (2, 1) for k > 0 , and t2 ⊂+ so (2) for k = 0 . For the
present class Lk is generated by K5, K6 and K7, the symbol τ is associated to the time
translation K1, and finally the infinitesimal generators of sub-algebra so (2, 1) are K2, K3

and K4.
Class Ib : m2 = 4 ω2 , any real k , ω 6= 0. For this class the Killing vector fields are

K1 = ∂t , K2 = ∂t − m ∂φ , (4.25)

K3 = −
H

D
sin φ ∂t + cos φ ∂r −

Dr

D
sin φ ∂φ , (4.26)

K4 = −
H

D
cos φ ∂t − sin φ ∂r −

Dr

D
cos φ ∂φ , (4.27)

K5 = −
H

D
cos(mt + φ) ∂t + sin(mt + φ) ∂r +

1

D
cos(mt + φ) ∂φ , (4.28)

K6 = −
H

D
sin(mt + φ) ∂t − cos(mt + φ) ∂r +

1

D
sin(mt + φ) ∂φ , (4.29)

K7 = sin z ∂u +
Fu

F
cos z ∂z , (4.30)

K8 = cos z ∂u −
Fu

F
sin z ∂z , (4.31)

K9 = ∂z , (4.32)

whose Lie algebra is given by

[K1, K5] = −m K6 , [K1, K6] = m K5 , [K2, K3] = −m K4 , (4.33)

[K2, K4] = m K3 , [K3, K4] = m K2 , [K5, K6] = m K1 , (4.34)

[K7, K8] = − k K9 , [K7, K9] = −K8 , [K8, K9] = K7 . (4.35)

So, the corresponding algebra for this case is LIb = Lk ⊕ so (2, 1) ⊕ so (2, 1). As in the
previous class the sub-algebra Lk depends on the sign of k, and here is generated by K7, K8

and K9. The two sub-algebras so (2, 1) are generated by the Killing vector fields K1, K5, K6

and K2, K3, K4.
Class II : m2 = 0 , any real k , ω 6= 0. For this class the Killing vector fields turns out

to be the following:

K1 = ∂t , K2 = ∂φ , (4.36)

K3 = −ω r sin φ ∂t − cos φ ∂r +
1

r
sin φ ∂φ , (4.37)

K4 = −ω r cos φ ∂t + sin φ ∂r +
1

r
cos φ ∂φ , (4.38)

K5 = sin z ∂u +
Fu

F
cos z ∂z , (4.39)

K6 = cos z ∂u −
Fu

F
sin z ∂z , (4.40)

K7 = ∂z . (4.41)
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The Lie algebra has the following nonvanishing commutators:

[K2, K3] = K4 , [K2, K4] = −K3 , [K3, K4] = 2 ω K1 , (4.42)

[K5, K6] = − k K7 , [K5, K7] = −K6 , [K6, K7] = K5 . (4.43)

Therefore, the corresponding algebra for this case is LII = Lk ⊕L4. The sub-algebra L4 is
generated by K1, K2, K3 and K4. This algebra L4 is soluble and does not contain abelian
3D sub-algebras; it is classified as type III with q = 0 by Petrov [73]. The sub-algebra Lk

is the same of the previous classes and is generated by K5, K6 and K7.
Class III : m2 ≡ −µ2 < 0 , any real k , ω 6= 0. For this class the set of linearly

independent Killling vector fields we have found is given by

K1 = ∂t , K2 =
2 ω

µ
∂t + µ ∂φ , (4.44)

K3 = −
H

D
sin φ ∂t + cos φ ∂r −

Dr

D
sin φ ∂φ , (4.45)

K4 = −
H

D
cos φ ∂t − sin φ ∂r −

Dr

D
cos φ ∂φ , (4.46)

K5 = sin z ∂u +
Fu

F
cos z ∂z , (4.47)

K6 = cos z ∂u −
Fu

F
sin z ∂z , (4.48)

K7 = ∂z . (4.49)

The Lie algebra has the following nonvanishing commutators:

[K2, K3] = µ K4 , [K2, K4] = −µ K3 , [K3, K4] = µ K2 , (4.50)

[K5, K6] = − k K7 , [K5, K7] = −K6 , [K6, K7] = K5 . (4.51)

Thus, the corresponding algebra for this case is LIII = Lk⊕τ ⊕so (3). Here τ is associated
to the Killing vector field K1, whereas to the sub-algebra so (3) correspond K2, K3 and
K4. Again Lk is generated by K5, K6 and K7.

Class IV : m2 6= 0 , any real k , ω = 0. In the integration of the Killing equation for
this general class one is led to distinguish two different subclasses according to k 6= 0 or
k = 0. We shall denote these subclasses as classes IVa and IVb, respectively.

Class IVa : m2 6= 0 , k 6= 0, ω = 0. This class corresponds to the so-called degenerated
Gödel-type manifolds. One obtains for this class the following Killing vector fields:

K1 = ∂t , K2 = ∂φ , (4.52)

K3 = cos φ ∂r −
Dr

D
sin φ ∂φ , (4.53)

K4 = − sin φ ∂r −
Dr

D
cos φ ∂φ , (4.54)

K5 = sin z ∂u +
Fu

F
cos z ∂z , (4.55)

K6 = cos z ∂u −
Fu

F
sin z ∂z , (4.56)

K7 = ∂z , (4.57)
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where D(r) = (1/m) sinh mr for m2 > 0 , or D(r) = (1/µ) sin µr for m2 ≡ −µ2 < 0,
and the function F (u) for k 6= 0 is given by (3.19). The Lie algebra has the following
nonvanishing commutators:

[K2, K3] = K4 , [K2, K4] = −K3 , [K3, K4] = −m2 K2 , (4.58)

[K5, K6] = − k K7 , [K5, K7] = −K6 , [K6, K7] = K5 , (4.59)

where one should substitute −m2 by µ2 if m2 < 0. So, the corresponding Lie algebra is
LIV a = Lk ⊕ τ ⊕ Lm, where Lm is so (2, 1) for m2 > 0, and so (3) for m2 = −µ2 < 0. The
sub-algebra Lk (generated by K5, K6 and K7) is so (3) for k < 0 , and so (2, 1) for k > 0 .
Again τ is associated to the Killing vector field K1.

Class IVb : m2 6= 0 , k = 0, ω = 0. We shall refer to this class as doubly-degenerated
Gödel-type manifolds. One obtains for this class the following Killing vector fields:

K1 = ∂t , K2 = ∂φ , (4.60)

K3 = cos φ ∂r −
Dr

D
sin φ ∂φ , (4.61)

K4 = − sin φ ∂r −
Dr

D
cos φ ∂φ , (4.62)

K5 = sin z ∂u +
1

u
cos z ∂z , (4.63)

K6 = cos z ∂u −
1

u
sin z ∂z , (4.64)

K7 = ∂z , (4.65)

K8 = u sin z ∂t + t sin z ∂u +
1

u
t cos z ∂z , (4.66)

K9 = u cos z ∂t + t cos z ∂u −
1

u
t sin z ∂z , (4.67)

where again D(r) = (1/m) sinh mr for m2 > 0 , or D(r) = (1/µ) sin µr for m2 ≡ −µ2 < 0.
The Lie algebra has the following nonvanishing commutators:

[K2, K3] = K4 , [K2, K4] = −K3 , [K3, K4] = −m2 K2 , (4.68)

[K5, K7] = −K6 , [K6, K7] = K5 , [K1, K8] = K5 , (4.69)

[K1, K9] = K6 , [K5, K8] = K1 , [K6, K9] = K1 , (4.70)

[K7, K8] = K9 , [K7, K9] = −K8 , [K8, K9] = −K7 , (4.71)

where one should substitute −m2 by µ2 if m2 < 0. So, the corresponding Lie algebra is
LIV b = t3 ⊂+ so (2, 1) ⊕ Lm, where Lm is generated by K2, K3, K4, and is either so (2, 1) or
so (3) depending on whether m2 > 0 or m2 = −µ2 < 0. The sub-algebra t3 ⊂+ so (2, 1) is
generated by K1, K5, K6, K7, K8, K9.

Class V : m2 = 0 , k 6= 0, ω = 0. A set of linearly independent Killing vector field for
this class is

K1 = ∂t , K2 = ∂φ , (4.72)

K3 = cos φ ∂r −
1

r
sin φ ∂φ , (4.73)

K4 = − sin φ ∂r −
1

r
cos φ ∂φ , (4.74)
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K5 = sin z ∂u +
Fu

F
cos z ∂z , (4.75)

K6 = cos z ∂u −
Fu

F
sin z ∂z , (4.76)

K7 = ∂z , (4.77)

K8 = r sin φ ∂t + t sin φ ∂r +
1

r
t cos φ ∂φ , (4.78)

K9 = r cos φ ∂t + t cos φ ∂r −
1

r
t sin φ ∂φ , (4.79)

where F (u) depends upon the sign of k and is given by eq. (3.19).
The Lie algebra has the following nonvanishing commutators:

[K2, K3] = K4 , [K2, K4] = −K3 , [K5, K6] = − k K7 , (4.80)

[K5, K7] = −K6 , [K6, K7] = K5 , [K1, K8] = −K4 , (4.81)

[K1, K9] = K3 , [K4, K8] = −K1 , [K3, K9] = K1 , (4.82)

[K2, K8] = K9 , [K2, K9] = −K8 , [K8, K9] = −K2 . (4.83)

So, the corresponding Lie algebra is LV = t3 ⊂+ so (2, 1) ⊕ Lk, where Lk is generated by
K5, K6, K7, and is either so (2, 1) or so (3) depending on whether k > 0 or k < 0. The
sub-algebra t3 ⊂+ so (2, 1) is generated by K1, K2, K3, K4, K8, K9.

Class VI : m2 = 0 , k = 0, ω = 0. From (3.12) – (3.14) this case corresponds to the
5D flat manifold whose Lie algebra is LV I = so (4, 1) since it clearly has the well known
fifteen Killing vector fields, namely five translations, four spacetime rotations, and six
space rotations.

It is worth noting that none of the above Lie algebras is semi-simple, but some of
their sub-algebras are. Besides, most of the simple sub-algebras are noncompact. The 3D
sub-algebra so (3) present in all classes is compact, though.

The number of Killing vector fields we have found for each of the above six classes
makes explicit that the 5D locally homogeneous generalized Gödel-type manifolds admit a
group of isometry G7 when (1a): m2 6= 4 ω2 , any real k , ω 6= 0, or when (1b): m2 6= 0,
k 6= 0, ω = 0 . Groups G9 of isometry occur when (2a): m2 = 4 ω2, any real k, ω 6= 0,
or (2b): m2 6= 0, k = 0, ω = 0, or when (2c): m2 = 0, k 6= 0, ω = 0. Clearly when
m2 = ω = k = 0 there is G15. These possible groups are in agreement with theorem 3
of the previous section. Actually the integration of the Killing equations constitutes a
different way of deriving that theorem. Furthermore, these equations also show that the
isotropy subgroup H of Gr is such that dim (H) = 2 when the above conditions (1a) and
(1b) are satisfied, while the conditions (2a), (2b) and (2c) lead to dim (H) = 4 , also in
agreement with the previous section. Clearly dim (H) = 10 when m2 = ω = k = 0.

5 Causal Anomalies and Final Remarks

In this section we shall initially be concerned with the problem of causal anomalies in
the generalized Gödel-type manifolds. Then we proceed by examining whether the IM
gravity allows solutions of generalized Gödel-type metrics (3.16). Finally, we conclude by
addressing to the general question as to whether the IM gravity theory rules out the 4D
noncausal Gödel-type solutions to Einstein’s equations of general relativity.
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In the first three of the six classes of homogeneous generalized Gödel-type manifolds
we have discussed in Section 3, there are closed timelike curves. Indeed, the analysis made
in a previous paper [64] can be easily extended to the generalized 5D Gödel-type manifolds
of the present article. To this end, we write the line element (3.16) in the form

ds2 = dt2 + 2 H(r) dt dφ− dr2 − G(r) dφ2 − F 2(u) dz2 − du2 , (5.1)

where G(r) = D2−H2 and (r, φ, z) are cylindrical coordinates. Now, the existence of closed
timelike curves of the Gödel-type depends on the behavior of G(r). Indeed, if G(r) < 0
for a certain range of r (r1 < r < r2, say), Gödel’s circles [74] u, t, z, r = const are closed
timelike curves.

Since one can always make H = 0 for the generalized Gödel-type manifolds of classes
IV, V and VI, then G(r) > 0 for all r > 0. Thus there are no closed timelike Gödel’s circles
in these classes of manifolds.

On the other hand, following the above-outlined reasoning it easy to show (see [64] for
details) that for each of the remaining three classes (Class I to Class III) one can always
find a critical radius rc such that for all r > rc one has G(r) < 0, making clear that
there are closed timelike curves in these families of homogeneuous generalized Gödel-type
manifolds. However, in what follows we shall show that these types of noncausal curved
manifolds are not permitted in the context of the induced matter theory.

In the Lorentz frame Θ̂A given by (4.1) the nonvanishing frame components of the
Einstein tensor ĜAB = R̂AB − 1

2
R η̂AB are

Ĝ00 = −
D′′

D
+

3

4

(
H ′

D

)2

−
F̈

F
, (5.2)

Ĝ02 =
1

2

(
H ′

D

)
′

, (5.3)

Ĝ11 = Ĝ22 =
1

4

(
H ′

D

)2

+
F̈

F
, (5.4)

Ĝ33 = Ĝ44 =
D′′

D
−

1

4

(
H ′

D

)2

, (5.5)

where the prime and dot denote derivative with respect to r and u, respectively.
The field equations (1.2) require that Ĝ02 = 0, which in turn implies that

H ′

D
= const ≡ −2 ω . (5.6)

Inserting (5.6) into (5.4), (5.5) and (5.2) one easily finds that the IM field equations are
fulfilled if and only if the independent parameters ω, k and m2 [ see eqs. (3.9) – (3.10 ]
vanish identically, which leads to the only solution given by

H = a , D = b r + c , and F = β u + γ, (5.7)

where a, b, c, β, and γ are arbitrary real constants. However, these constants have no
physical meaning, and can be taken to be a = c = γ = 0 and b = β = 1 by a suitable
choice of coordinates. Indeed, if one performs the coordinate transformations

t = t̄ −
a

b
φ̄ , r = r̄ −

c

b
, (5.8)

φ =
φ̄

b
, z =

z̄

β
, u = ū −

γ

β
, (5.9)
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the line element (5.1) becomes

dŝ2 = dt̄2 − dr̄2 − r̄2 dφ̄2 − dz̄2 − dū2 , (5.10)

in which we obviously have G(r̄) = r̄2 > 0 for r̄ 6= 0. The line element (5.10) corresponds
to a manifestly flat 5D manifold, making it clear that the underlying manifold can be
taken to be the simply connected Euclidean manifold R

5, and therefore as G(r̄) > 0 no
closed timelike circles are permitted. Furthermore the above results clearly show that the
IM theory does not admit any curved 5D Gödel-type metric (3.16) as solution to its field
equations (1.2).

However, in a recent work Mc Manus [17] has shown that a one-parameter family of
solutions of the field equations (1.2) previously found by Ponce de Leon [75] was in fact
flat in five dimensions. And yet the corresponding 4D induced models were shown to be a
perfect fluid family of Friedmann-Robertson-Walker curved models (see Refs. [11, 13, 19]
and also [76] – [78], where other Riemann-flat solutions are also discussed).

Therefore a question which naturally arises here is whether the above 5D flat metric,
which is the only solution to the IM field equations, can similarly give rise to any 4D
curved spacetime. However, from (5.10) one obviously has that the corresponding 4D
spacetime is nothing but the Minkowski flat space (this result can also be derived by
using a computer algebra package as, e.g., classi [71, 69] to calculate the 4D curvature
tensor for m2 = ω = 0 ). In brief, the only solution of the IM field equations (1.2) of
generalized Gödel-type is the 5D flat space (5.7), which give rise only to the 4D Minkowski
(flat) spacetime, whose topology can be taken to be the simply connected Euclidean R

5,
in which no closed timelike curves are permitted.

Although the above results can be looked upon as if the induced matter theory works
as an effective therapy for the causal anomalies which arises when one starts from the
specific generalized 5D Gödel-type family of metrics (5.1), this does not ensure that the
induced matter version of general relativity is an efficient treatment for the causal anoma-
lies (solutions with closed timelike curves) in general relativity as it has been conjectured
in [65]. Actually, in a recent paper (which unfortunately has not been initially noticed
by Rebouças and Teixeira [65]) Romero et al. [67] (see also [79]) have shown that the
induced matter 5D scheme is indeed general enough to locally generate all solutions to
4D Einstein’s field equations. This is ensured by a theorem due to Campbell [80] which
states that any analytic n-dimensional Riemannian space can be locally embedded in a
(n + 1)-dimensional Ricci-flat space. In our context this amounts to saying that there
must exist a five-dimensional Ricci-flat space which locally gives rise to the 4D Gödel
noncausal solution of Einstein’s equations of general relativity. Thus, what still remains
to be done regarding Gödel-type spaces is to find out this 5D Ricci-flat space which gives
rise (locally) to the 4D Gödel-type spacetimes of general relativity.

To conclude it is worth stressing some features of the local underlying embedding of
the induced matter theory. Any Riemann-flat manifold obviously is also Ricci-flat. The
reverse, however, does not necessarily holds, and one can have Ricci-flat spaces which are
not Riemann-flat. For the generalized 5D Gödel-type geometries we have discussed in
this paper the condition for Ricci-flatness (R̂AB = 0) necessarily leads to Riemann-flat
spaces. Remarkably many solutions of the field equations (1.2) are indeed Riemann-flat
(see [11, 17, 19] and [75] – [78]). From a purely mathematical 5D point of view all Riemann-
flat spaces are locally equivalent (locally isometric). However, from the viewpoint of the
5D induced matter gravity all the above-referred 5D Riemann-flat solutions give rise to
physically (and geometrically) distinct 4D spacetimes [11, 17, 19], [75] – [78]. On the other
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hand, in the light of the equivalence problem techniques we have discussed in Section 2,
these 5D Riemann-flat examples also show that all 5D Cartan scalars (2.3) can vanish
identically, with or without the vanishing of the corresponding (induced) 4D Cartan scalars.
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